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In this paper we are interested in finite connected 2-
dimensional CW-complexes, each with a single 2-cell. We
show any two such complexes have the same homotopy
type if their fundamental groups are isomorphic. In fact,
there is a homotopy equivalence inducing any isomorphism
of the fundamental groups. We also study the homotopy
factorizations of such spaces into finite sums.

In this paper we are interested in finite connected 2-dimensional
CW-complexes with a single 2-cell. Each such CW-complex has the
homotopy type of the cellular model C(<Z) of some finite one-relator
presentation

B = (x4, +++, 2,2 R)

of & =xnX. If the single relator R is not a proper power, it is
known that the cellular model C(<#) is aspherical (see [10], [1], or
[4]), hence it is determined up to homotopy type by its fundamental
group. If the single relator R is a proper power, C(ZZ) is not
aspherical, nevertheless we are able to prove the following:

THEOREM 1. Any two finite connected 2-dimensional CW-com-
plexes, each with a single 2-cell, have the same homotopy type if
their fundamental groups are isomorphic. In fact there 1s a
homotlopy equivalence inducing any isomorphism of the fundamental
groups.

Our proof makes use of Lyndon’s resolution for one-relator
groups [10] and some combinatorial results on one-relator groups
which can be found in the book by Magnus, Karass, and Solitar [11].

Theorem 1 has these corollaries:

COROLLARY 1. Let X and Y be two finite connected 2-dimen-
sional CW-complexes, each with a single 2-cell. Then X =Y if
XVvVL=YVM where L and M are finite CW-complexes with
isomorphic fundamental groups. Thus X =Y if and only if
Xv L=Y\V L where L is any finite CW-complex.

Proof. We have n X»mL~mYs+n M. Because all groups
involved are finite generated, we can write these as free product of
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irreducible groups (relative to free product), and by uniqueness of
such free product decompositions (see [11], p. 245), we obtain
7, X~ mY. The result now follows from Theorem 1.

Given a space X with fundamental group &, the homotopy
classes of homotopy self-equivalences X — X form a group under
composition. There is an evaluation homomorphism

£: £ (X)— Aut &

which assigns to each based self-equivalence f: X — X the auto-
morphism fi:7,X = F— 5 in Aut Z. By Theorem 1 we have

COROLLARY 2. For a finite connected 2-dimensional CW-com-
plex X with a single 2-cell, the evaluation homomorphism #: & (X) —
Aut 5 is an epimorphism with kernel H*E, 7,X). (See Schellenberg

[12].)

The only possible free product decompositions ¥~ H+*K of a
finitely generated one-relator group &= involve another such group
H and a free group K of finite rank (this statement follows from
a remark in [13] (page 276) which is stated there without proof,
hence we include its proof in the proof of Theorem 2). We prove

the following topological analogue of this algebraic situation:

THEOREM 2. The only possible montrivial homotopy decomposi-
tions X =W N Z of a connected finite 2-dimentional CW-complex
with a single 2-cell inwvolves amother such complex W and a finite
sum Z = kS of k copies of the l-sphere S', and there is such a
homotopy decomposition X ~ W \/ Z for each nontrivial free product
decomposition 7w,.X ~ H=K.

DEFINITION. We say a space X is 1rreducible if each homotopy
decomposition X ~ Y Vv Z is trivial, i.e., either Y or Z is contracti-
ble.

By Theorem 2 we have that a finite connected 2-dimensional
CW-complex X with a single 2-cell is irreducible if and only if 7, X is
irreducible (see also Lemma 8 in §3). In [13] Shenitzer proves some
results which ensure the irreducibility of a one-relator group. For
example he shows that the one-relator group

(0 -+ ()

is irreducible, hence its cellular model is irreducible. In particular



ON 2-DIMENSIONAL CW-COMPLEXES WITH A SINGLE 2-CELL 193

any nonorientable closed surface of genus & = 1 is irreducible.

For a reducible one-relator group &, by uniqueness of the free
product decompositions, we have that & can be written as a free
product H+K where H is an irreducible one-relator group and K is
a free group of rank %k, for some maximal integer £k = 1. We have
the following topological analogue.

COROLLARY 3. If X 1is a finite connected 2-dimentional CW-
complex with a single 2-cell, then X =Y \V kS* where Y is an
irreducible 2-dimensional C W-complex with a single 2-cell and k= 0
18 the maximal number of free factors in a free product decomposi-
tion of w X.

We have the following uniqueness result for the decompositions
relative to the sum:

COROLLARY 4. Suppose X,V X,V .-V X, =Y, VY,v---VY,
where X, and Y; are 2-dimensional finite connected irreducible CW-
complexes with a single 2-cell. Then n=m and Y, ---, Y, can be
rearranged so as to yield Y;, ---, Y; where X; = Y;,.

Proof. We have X xwX,xeeexm X, =Y, *xm,Y,5eeexm, Y,
where 7, X, and 7, Y; are irreducible with respect to free product.
Thus by uniqueness of such free product decompositions, we have
n =m and mX;~ r(Y;). The result now follows from Theorem 1.

The organization of this paper is as follows. The proof of
Theorem 1 is given in §2, using two lemmas which are given in
§1. The proof of Theorem 2 is given in §3. Finally in §4 we give
an example of Dunwoody which shows that the Theorem 1 fails to
generalize for 2-dimensional CW-complexes with one-relator funda-
mental groups and the same number # > 1 of 2-cells.

All the spaces in this paper are connected CW-complexes unless
otherwise stated, with some zero cell chosen as basepoint which is
preserved by all maps and homotopies.

I would like to express my gratitude to Professors A. J. Sieradski
and M. N. Dyer for their guidance and valuable advice. My thanks
are also due to Dr. Sieradski for his valuable suggestions for the
improvement of his paper.

1. Some results about one-relator groups. A finite presentation
P = (g rs) consists of a finite set {g.} of elements, called the
generators of &7, together with a finite set {r;} of elements in the
free group F = F(g,) on the generators, called the relators of 2.
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The group presented by & = (g.. r;) is the quotient group = = F/N
of F' modulo the smallest normal subgroup N = N(7;) of F containing
the relators r,. In this case we say « is a finitely presented group.

Now we record some results about the one-relator group Z which
is given by the presentation

RB = (xu sty Xyt RT)

where R is not a proper power.

Notation. For simplicity, we employ the same notation for
elements of F' and 5. We let ZZ denote the integral group ring
of Z. All Z5-modules are left ZZ-modules. Any element we Z%
defines a left ZZ-module homomorphism w: Z5Z — ZZ given by the
right multiplication. If K is any left Z-module and we ZZ, K
denotes the subgroup of all ke K such that wk = 0. For we 5 and
a positive integer s, we let

{w,s) =1+w+ -+ +w and {(w, —s) = —w *{w,s) in ZE.
We have the following ( )-identities:
(w— 1w, s) =w* —1, (w,s) +wlw,t) ={w,s+1),
<’Il), S><ws’ t> = <w’ St>
whenever the elements involved are defined. (See [12].)
The following is a Z-resolution of the trivial Z-module Z (see
Lyndon [10]):
(R, 7> R-1 (R, 1> R-1 _ _

A A o LB —— 75

P zey g g0

where ¢: Z5 — Z is the augmentation homomorphism,
0= —1,---,2,—1) and 0, =R, r)(0R/ox, ---, 0R/ox,)

is the Jacobian matrix of the presentation .ZZ described in the free
differential calculus of R. H. Fox [5, p. 198].

Hence using the left ideal Z5(R — 1) as the coefficient module
and the above resolution, there is the cohomology group

H¥E, Z5R — 1)) = znZ5(R — )/(R — 1)Z5(R — 1) .

LEMMA 1. The cohomology group

HYE, Z5Z(R — 1)) ~ Zp(R — 1)/Zp(R — 1)’ ~ Z,
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where p denotes the cyclic subgroup of 5 generated by R.

Proof. Let we ZZ. Then

(B, r>w(R —1)=0—wR —1)e(R —1)Z5
[from Lyndon’s resolution]
= we Zp + ZE{(R,r) + (R — L) Z&
[This is Lemma 3 of Hughes [8]].

Thus

H¥E, ZE(R — 1)) = (Zp(R — 1) + (R — 1)ZZ(R — 1))/(R — 1)ZE(R — 1)
= Zo(R — 1)/Zp(R — 1) .

Now the second isomorphism of the lemma follows from the
following relation: R (R — 1) = (R — 1) modulo (R — 1)’.. The proof
is via induction. For ¢ = 0, the result is trivial and for 2 = 1, the
relation is simply B> — R= R — 1 modulo R’ — 2R + 1. Suppose
it is true for i=n—1=1, then RYR—-1)=R-R"'(R—-1) =
R(R—1)=(R —1) modulo (R —1® One can therefore define the
required isomorphism this way:

Sa,R{(R — 1) mod Zo(R — 1) — Ser, mod 7 .

That H¥Z, ZE(R — 1)) ~ Z, also follows from Theorem 2, page
129 of [6].

LeMMA 2. Let (r,s) =1. Then

(1) The left ideals ZE(R — 1) and ZE(R* — 1) in ZE coincide.

(ii) The Z5-module homomorphism (R, s): ZE(R —1)—
ZE(R* — 1) is an tisomorphism and the induced homomorphism
(R, 8 Z,~HE, ZE(R — 1))— H¥E, ZE(R — 1))~ Z, carries 1 — s.

Proof. (i) Because (r, s) =1, there exists positive integers k&
and s’ such that ss' =1 + kr. Using the { >-identities, we obtain

(R, )(B* — 1) = (B, )R, s)(R — 1)

={(R,ss (R — 1)
= (k{(R, ) + 1)(R — 1)
=R-1,

hence ZE(R — 1) is a subset of ZZ(R° —1). Since (R, s)(R — 1) =
R — 1, we have ZZ(R* — 1) is a subset of Z5(R — 1).

(ii) One easily checks that when ss’ = 1 mod r», the Z5Z-module
homomorphisms (R, s> and (R’ s'> are inverses. In terms of the
identifications of Lemma 1, the induced cohomology homomorphism
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(R, s), is given by
R —1)mod Zo(R — 1 — (R, s)(R — 1) mod Zp(R — 1)
or equivalently,

lmod» ——smod7r.

2. Proof of Theorem 1. Given a 2-dimensional CW-complex
X with a single O-cell, the universal covering X of X admits the
fundamental group & = 7, X as the group of covering transforma-
tions, and there is a canonical CW-structure on X for which the
projection map is cellular and the covering transformations g: X — X,
g€ &, are orientation preserving cellular homeomorphisms. The
action of the covering transformations on the cellular chain complex
C.(X) via the induced chain maps g,: C.(X)— C.(X), makes C.(X) a
chain complex over ZEZ. We can identify the second homotopy module
7,X with H,X = ker 8,(X), using the covering projection isomorphism
7,X ~ m,X and the Hurewicz isomorphism X ~ H,X.

Now let Y be any other 2-dimensional CW-complex with a single
0-cell, and let @ be homomorphism from 7, X =5 —>xw =m,Y. Let
LC(Y) denote C.(Y) viewed as a chain complex of modules ,C,(Y)
over ZE Dby means of the action m .2z = a(m)-x for me ZZ and
reC(Y). Any map f: X—Y with fi=a on the fundamental
groups, lifts to glve a map f: X — Y which induces a chain map
Fai Cu(X) = C(Y) of Z5-module homomorphism. Conversely, any
chain map v: C.(X)— .Co(Y) with v, = Z,: C(X) = Z5 — Zr = CO( Y),
is realizable by a map f: X — Y such that furn X—->nYis a: 5 —>=x
and Z&-module homomorphism f,: 7,(X) — m,(Y) coincides with
v, ker 0,(X): ker 0,(X ) — ker 0,(Y) under the identifications kerd,(X) =
7(X) and kero,(Y)=n,Y). Thus X and Y have the same homotopy
type if and only if the above homomorphism «: 5 — 7 is an isomor-
phism and there is a chain map v»: C.(X)— .C.(Y) which restricts to
ker 5,(X) to give an ZZ-module isomorphism (see Schellenberg [12]).

Since X is simply connected, the chain complex C,(X) provides
us with the truncated free resolution e&: C.(X)— Z which we can
extend into a free resolution
e ™ %)~ z2—0

i
I

ZE

3:(E) 3u(X
Cu(E): - — C (5) 2 o 1) 2H)

of the trivial module Z over ZEZ (e: ZZ — Z is the augmentation
homomorphism). In view of the exactness of the resolution C.(&),
we have that Image 8,(8) = ker 9,(X) = 7,(X). Since any free resolu-
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tion of the trivial module Z over ZZ is known to be uniquely de-
termined upto chain equivalence, the cohomology depends on the
fundamental group Z alone.

The following “comparison theorem” will be helpful in the proof
of Theorem 1. We state it in a more general setting than required
for Theorem 1.

Let £ and © be two groups such that H¥E, ZZ) =0 and
H¥r, Zrw) = 0. Let C.(Z) and C,(w) be free resolutions of finite type
(i.e., each module is finitely generated) over Z5 and Zr, respectively,
of the trivial module Z.

THEOREM 3. Let a: & — 7 be a group isomorphism. If u:C (&)—
Lx(T) 18 any chain map over ZE extending 1: Z — Z and u: N(5) —
DN(T) 18 its restriction to kermels of 0,(&) and 0,w), the induced
homomorphism

uy: H(&, N(&)) — H¥&, .N(x))

18 an isomorphism. Moreover, if v is any other such chain map,
then u, = v.: HYE, N(&)) — H¥ &, ,N(x)).

Proof. Since C.(w) is free over Zr, there exists a chain map
u': Cu () — ~1C(8) over Zzm extending 1: Z— Z, or equivalently, a
chain map u': ,C.(7) — C.(Z) over ZZ extending 1: Z — Z. We again
denote by w': ,N(x) — N(Z) the restriction of u, to kernels of 0,(r)
and 0,(%). We prove that w,u, = lyss ye). Because both #'u and
1: C(B) — Cy (") extend the identity map, they are chain homotopic
so that there exists a chain homotopy s:1 = w'u, ie., 1 —u'u =
0(8)s + s0(H). For {f}e HY(Z, N(&)), we have w'uf = f — 0,(5)s,f —
$,0,(E)f = f — 0,(5)s,f since f: Cy(5) — N(Z) = ker 9,(Z), and we have
0y(H)s,f € BY&, N(H)) since {s,f} e H¥&, C(5)) = 0, by the hypothesis
H¥EZ, Z5) = 0 and the fact that the functor H*&, —) is additive
(i.e., it commutes with finite direct sums). Using the hypothesis
H¥(r, Zw) = 0, one can similarly show w,u} = Ly, ven-

Finally let v: C.(5) — ,C.(x) be any other chain map over ZZ
extending 1: Z — Z. We prove that (w — v), is the zero homo-
morphism. Because both wu, v: C (&) — ,C.(7) extend the identity
map 1: Z — Z, there exists a chain homotopy s:u = v, i.e., u — v =
o(w)s + sd(5). For {f}e H¥ Z, N(5Z)), we have

(u — V)f = 0y(m)8of + 8.0,(5)f
= 0y(7m)s.S

since f: Cy(&) — N(&H) = ker 0,(Z), and we have 0,(%)s,f € B¥(Z, N(x))
since H¥E, C(&)) = 0.
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In view of Lyndon’s resolution, the hypothesis of the above
theorem is satisfied for one-relator groups. Indeed there is a rather
large class of groups for which the hypothesis holds (see [3]).

Before we can give a proof of Theorem 1, we need one more
observation.

Each finite presentation

P =Gy o It Yay 0y V)

of 7 has a cellular model C(.”) with fundamental group =,(C(Z°)) = =.
This model is obtained from a sum VS; l-spheres S*, one for each
generator g,, by attaching 2-cells via maps S'— VS; spelling out the
relators v;. Using the standard argument for collapsing a maximal
tree, each finite connected 2-dimensional CW-complex has the
homotopy tpye of the cellular model C(.<”) of some finite presenta-
tion & of = = 7w, X.

Proof of Theorem 1. Let X and Y be finite connected 2-dimen-
sional CW-complexes with a single 2-cell and isomorphic fundamental
groups. Since X and Y have the same homotopy type as the
cellular models C(<#Z) and C(«”?), respectively, where

B = (xu trty Xyl RT)
and
& = (yu cy Yns Qq)

(R and @ are not proper powers) are finite presentations for & = 7, X
and 7 =z, Y, we may assume that X = C(<#Z) and Y = C(&).

Suppose » = 1. Then =5 is torsion-free ([11], Theorem 4.2, p.
266). This implies that 7 is torsion-free as well so that ¢ = 1; thus
X and Y are aspherical (see [10], [1], or [4]). Since by hypothesis
7(X)=EF~n=mn(Y), they have the same homotopy type and in
fact there is a homotopy equivalence between X and Y inducing
any isomorphism a: 5 — 7.

Thus we assume r = 2. We claim that » = ¢ and n = m. The
first follows since R defines an element exactly of order » in = ([11],
Corollary 4.11, p. 266) and elements of finite order in £ and = are
defined by conjugates of powers of R and @, respectively, ([11],
Theorem 4.13, p. 269). The second follows by looking at the
abelianizations of the two groups.

Now let a: & — 7 be any given isomorphism. Then a(R) = gQ'g™*
where g e, (¢, ) = 1 ([11], Theorem 4.13, p. 269). Because X = C(#)
and Y = C(«?), the truncated free resolutions &:C.(X)— Z and
¢': C.(Y)— Z coincide with the initial segments of Lyndon’s reso-
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lutions C.(&) and C.(x) of the trivial module Z over ZZ and Z=,
respectively (see §1). Thus we obtain

C.(5): - f;“>0(:> j;‘“lC(X) () 01<IX) AE) 0 (R) s Z
Z5 75 (ZJL”)“ ZHE
and
Co(m): -+ - a“(”) 2 G )33"‘) o 2D o2 o7y L 2.
T

As usual we invoke identifications 7,(X)= ZE(R — 1) and 7,(Y) =
Zn(@ — 1).

Let u: C (&) — ,C.(m) be any chain map extending the identity
map 1: Z— Z and let u also denote the restriction u,|Z5Z(R — 1):
ZE(R—1)— . Zn(@ — 1). From Theorem 3, we have that wu,:
H¥E, Z3(R — 1)) — H¥&, ,Zn(Q — 1)) is an isomorphism.

Then ZZ-module isomorphism

A ——>Z7r-L AT

carries (B — 1) to ¢g(@ — 1) and hence induces a ZZ-module iso-
morphism

w: ZE(R — 1) — Z1(Q — 1)

since Zzg(Q* — 1) = Zn(Q' — 1) = Zn(@ — 1) [by Lemma 2 (i)]. Be-
cause w,: HY(Z, Z5(R— 1)) —> H¥Z, ,Z7n(@ — 1)) is an isomorphism, we
obtain an isomorphism @: H&, ZE(R — 1)) —» HY(E, ZE(R — 1)) such
that w,® = u,. Since HE, ZZ(R — 1))~ Z, |[by Lemma i], @ is
completely determined by its image @w(1l) = s mod » where (s, ) = 1.
Then by Lemmas 1 and 2, @ coincides with the cohomology iso-
morphism induced by the ZZ-module isomorphism (R, s): ZE(R —1) —
ZE(R — 1). Hence v = w{R, s) is an isomorphism from Z5(R — 1) —
L@ — 1) such that v, = u,. This means that there exists a
module homomorphism 7v: CX) = Z5 — ,Zn(Q — 1) = ker 8,(Y) such
that (v — w)00y(8) = Y00y(&). Then u, + v: CX) = Z5 — Zn = Cy(Y)
restricts to the second homotopy module ZZ(R — 1) to give w:
ZER — 1) > Z7(@ — 1) since (u, + V)005(8) = Uy00,(5) + v00dy(5) —
U0 0y(8) = vod,(5).

The homomorphisms u, = Za, u,, and u, + v constitute a chain
map C.(X)— .C.(Y) which induces an isomorphism on ker 3,(X).
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Therefore by the preliminary remarks in this section there exists a
map f: X--»Y which realizes this new chain map and any such
realization is actually a homotopy equivalence. This completes the
proof of Theorem 1.

3. Factorization as sums. Let X be a finite connected 2-dimen-
sional CW-complex with a single 2-cell. In this section we consider
homotopy factorizations of X into finite sums. Since any summand
in such a factorization is dominated by the connected CW-complex
X, the summand has the homotopy type of a connected CW-complex.
Hence we may always assume each summand to be a CW-complex.
Moreover we may assume X is the cellular model C(Z°) of a finite
presentation

o= (g, e, T2 Q)

(where @ is not a proper power) for = = 7, X.

LEMMA 3. (i) X =#WvVv S
(ii) If X =W\ Z where W and Z are not contractible, then
T W+ 1 and 7,4 + 1.

Proof. (i) Let f: X— W Vv S* be a homotopy equivalence. If
g = 1, then X = C(9”) is aspherical so that 0 = T, X ~ 1, (W Vv $) ~
T, W& Zrz, which is a contradiction. Thus we assume ¢ > 1. In
this case we have Z7(Q — D)~ 1, X ~ (W V S) ~n,(W)D Zx. But
this is impossible since we have the following commutive diagram:

Zr@ -1 = n,X Lon Wy S =, We Zx

[ I

HX T mwy sy

where h and h denote the Hurewicz homomorphisms. Here /& and
I are given by the augmentation homomorphism &: Zz — Z. Clearly
then % is the zero homomorphism whereas i is a nonzero homo-
morphism, yielding a contradiction.

(i) Suppose (ii) is not true, then without loss of generality
we may assume that 7,72 = 1. Since X is 2-dimensional, H, X = 0
for 1 = 3 which implies that H,Z = 0 for ¢+ = 3. Furthermore since
H,X is a free abelian group of rank 0 or 1, we conclude that H,Z = 0
or Z. If H,Z =0, we have that Z is contractible, a contradiction.
Thus assume H,Z = Z. But then Z is a Moore space M(Z, 2), hence
Z ~ S This gives X = W Vv S%, contrary to part (i) above.

Proof of Theorem 2. Let us assume that X = WV Z where W
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and Z are noncontractible. Because X = C(Z”) where &F =
(&, ++°, 2,: QY), T = F/R where F' = F(x,) is the free group generat-
ed by «, ---,z, and R is the normal closure of the single relator
Q. Since r, X~ Wxrm,Z with z, W+ 1, 7,Z -+ 1 [by Lemma 3 (ii)],
we have an epimorphism @: F — n, Wxn,Z given by

Fl FIR 2 a, Wer 2

where 6: F'— F/R is the canonical homomorphism and ¢: F/R =
7. X — n,W=m,Z is an isomorphism. Therefore by Grushko’s theorem
(see Kurosh [9]), there exists generators w,, ---, w, 2, -+, 2, of F
such that @, = @(w,) generate 7, W and z; = @(z;) generate 7,Z. Thus
7w has presentation

(wu crey Wiy Byy vy Ryl T(wi, z:))

where r(w;, ;) is the original relator Q?e F(zx,) = F(w,, Z;) written
in terms of the now generators.

We claim that »(w;, z;) is a reduced word either in w, or in z;
only. To see this suppose r = r(w,, ;) involves both w,’s and z;’s.
We can write r = 1 in F(w,, 2;) uniquely as a product V, ---, V,
where V,e F(w,;) or F(z;), V, # 1 and such that V, and V,., belong
to different factors of the free product F(w,)+F(z;). Since @(r) =1
in 7, Wxn Z, it follows that for some index », 1 v <s, (V,) =1
in 7,W or in =, Z. Without loss of generality, suppose V., (@,) =
PV,)y=11in 7, W so that V,(w; =1 in #. But this is impossible:
the single relator » does involve z;, hence by the Freiheitssatz ([11],
Theorem 4.1, p. 252) the subgroup of 7 = F/R generated by the
generators w,; is freely generated by them so that V,(w,) # 1 in 7.

Thus we may assume that the original relator » is a word in
only w,. Hence 7, Z is presented by (z,, ---, 2;:) and «, W is presented
by (wy, ---, w;:r(w,), and the original isomorphism ¢ is a factor-
wise isomorphism

P = Pyxpz FIR = F(w)/Nr(w))* F(z;) —> n, Wxn,Z

where N(r{w,)) is the normal closure in F(w,) of the single relator
r(w,) and F'(z;) is the free group of rank %k generated by z, ---, z,.

Therefore «,Z is a free group of rank %k and since Z is a retract
of a 2-dimensional CW-complex X, by a result of C. T. C. Wall ([14],
Proposition 3.3), Z has the homotopy type of a finite bouquet of 1-
spheres and 2-spheres. But in view of Lemma 38 (i), there can be
no 2-spheres involved; therefore Z ~ kS'.

By Theorem 1, there is a homotopy equivalence

i WV ES' — Y V ES!
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where Y is the cellular model of the presentation (w,, ---, w;: 7(w,))
and f; = ppxLiwt, WxF* > 1, Y« F* Now we can attach k 2-cells via
the attaching maps which are identity on the %k 1-spheres, and the
homotopy equivalence f extends to a homotopy equivalence W\
EB*~Y v kB* (|7], Prop. 6.8, p. 41). Thus W~Y.

Finally let us assume that 7, X~ H+«K with H =1 and K = 1.
Without loss of generality we may assume that H is a one-relator
group and K is a free group of rank k%, say. Then by Theorem 1,
X=WvZ where W is the cellular model of a single relator
presentation for H and Z = kS'. This completes the proof.

4. An example. One might attempt to generalize Theorem 1
to 2-dimensional CW-complexes with one-relator fundamental groups
but having more than a single 2-cell. Unfortunately, we have the
following example of Dunwoody [2] which involves homotopically
distinct 2-dimensional C W-complexes with two 2-cells and isomorphic
one-relator fundamental groups. Namely he has shown that the
cellular models of the presentations

FP = (a, b:a®7? 1)
and
P = (a, b: (a27)(a?b~*)*(a’d~%)*, (a?b~*)(a®b~*)(a®b~®)*(ab~3)*)

of the trefoil group do not have the same homotopy type (x° denotes
g 'zg). However C(F) V S* = C(#) VvV S
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