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If A is the disc algebra, the uniform algebra of func-
tions analytic on the open unit disc D and continuous on its
closure, and if u,pc A with ||¢|| <1, then the operator uC,
is defined on A by uC,: f(z) > u(z)f(¢(z)). In this note we
characterize compact operators of this form and determine
their spectra.

We recall that a bounded linear operator T' from a Banach space
B, to a Banach space B, is compact if given a bounded sequence
{x,} in B,, there exists a subsequence {x,} such that {Tx,} converges
in B,.

If : D — D, we let @, denote n™ the iterate of ¢, i.e., p,(2) = 2z
and ¢,(2) = ¢(@,.(2)) for ze D and n = 1. Our main result is the
following.

THEOREM. Let uc A, pc A, |lp|| £1 and suppose ¢ is not a
constant function.

I. The operator uC, is compact if, and only if, |p(z) <1
whenever u(z) # 0.

II. Suppose uC, is compact and let z,€ D be the umique fixed
point of @ for which ¢,(z) — z, for all ze D. If |z| =1, then uC,
s quasinilpotent, while if |z, < 1, the spectrum o(uC,) = {u(z)@ (2)" | n
18 a positive integer} U {0, u(z,)}.

1. Characterization of compact uC,. We first consider the easy
case in which ¢ is a constant function.

THEOREM 1.1. Suppose uc A and o) =acD for all zeD.
Then uC, is compact.

Proof. Since @(z) =a for all zeD, wC,)f(z) = u(@)f(p) =
fla)u(z). Therefore the range of uC, is one-dimensional and so uC,
is compact.

We next give a necessary and sufficient condition that «C, be a
compact operator for those ¢ which are not constant funetions.

THEOREM 1.2. Suppose ucd, pc A, |lpl| £1 and ¢ is not a
constant function. Then uC, is a compact operator on A if, and
only if, |p(z) < 1 whenever u(z) = 0.
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Proof. Since everything holds if 4 = 0, we will assume that «
is not identically zero.

1. Suppose uC, is a compact operator on A. We must prove
that if ze D and w(2) # 0, then |p(z)] < 1. Sinee @ is not a constant
funection, the maximum modulus principle implies that |p(z)] <1
whenever |z| < 1 and thus it suffices to show that [p(z)] < 1 when
u(z) = 0 and z lies on the unit circle. Assume the contrary and let
0 satisfy u(e'’) = 0 and |p(e?)] = 1. Set p = ¢(e*) and for each posi-
tive integer =, define f, by f.(2) = @Gz + ). Then ||f.]| =1.
Since uC, is assumed to be compact, there exists a subsequence
{f.,) and a function F in A with (uC,)f,,— F in A. That is,
w(2)(3(p(z) + )" — F(z) uniformly for ze D. But ((p(z) + p)™* — 0
for |2/ < 1 and so F(z) =0 on D. However, F is continuous on D
and therefore F(z) =0 on D. Hence (uC,)f,,— 0 uniformly on D.
In particular, w(e?)(3(p(e®) + @) — 0. But for all %, we have
lu(e®)(E(p(e) + )™ = |u(e’)] + 0. This is a contradiction. Hence
if uC, is compact and u(z) = 0, then |p(z)] < 1.

2. Conversely, assume |p(z)] < 1 whenever u(z) 0. To show
that «C, is compact, assume f,c A and [[f.]| 1. Since {f,} is a
uniformly bounded sequence of functions on D, it is a normal family
in the sense of Montel and so there exists a subsequence {f,,} and
a function g analytic on D with f,, — ¢ uniformly on compact sub-
sets of the open dise D. We observe that this convergence implies
SUD/wi<: lg(w)] £ 1. Now defined a function G on the closed disc D
by setting G(z) = 0 whenever |z| = 1 and u(z) = 0, and letting G(z) =
u(2)g(p(z)) otherwise. We claim that G ¢ 4 and (uC,)f,, — G uniform-
ly on D.

We first show that G is continuous on D. Indeed, G is continu-
ous on {z|u(z) == 0} since |p(z)] < 1 on this set and ¢ is continuous
on D. Further, if [2*| =1 and u(z*) = 0, let {z,} be a sequence in
D converging to z*. For each m, G(z,) = 0 or G(2,) = u(2,)9(@(2y)).
Since |g(p(z,))] <1 it follows that lim, .. G(z,) = 0 = G(z*) and so
G is continuous at each ze D. Also G is analytic on D since w and
go@ are analytic on D. Hence G e A.

To show that (uC,)f,, — G uniformly on D, let V = {¢"|u(e”’) = 0}
and suppose ¢ > 0. Since w is continuous, there exists an open set
U>DV for which |u(t)] < e for te U. Also since |u(z)] <1 for z¢ U
and D\U is a compact set, there exists », 0 <» <1, such that
lp(2)] < r for z¢ U. Moreover, since f, — g uniformly on compact
subsets of D, u(z)f, (p(2) — w(z)g(p(z)) uniformly for z¢ U. That
is, there exists an integer N such that |u(2)f, (p(z) — G(2)] =
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[u(2)f,,(p(z)) — u(z)g(p(z))| < e for k = N and all z¢ U. On the other
hand, for ze U\V and for all k,

(uCo)fo,(2) — G(2)] = [u(2)f, (@(2) — u(2)g(p(2))]
= sup [[u(2)| | (@(2)) — 9(@(@)|] < e[|l foll + llglle] = 2¢ .

Finally, if ze V, then (uC,)f,(2) = uw(2)f, (p(z)) =0 = G(2). Hence
given ¢ > 0, there exists an integer N such that [(uC,)f,, () — G(2)| < 2¢
for k= N and all zeD. That is, («C,)f,, — G uniformly. Thus if.
|p(2)] < 1 whenever u(z) = 0, then the operator uC, is compact.

2. Spectra of compact uC,. If T is a bounded linear operator
from A to A we let o(T) denote the spectrum of 7. As before, we
first consider the case where ¢ is a constant function.

THEOREM 2.1. Suppose uc A and @) =acD for all zeD.
Then o(uC,) = {0, u(a)}.

Proof. 0 and w(a) are both eigenvalues #C,. For, if F(z) =
2z — a, then (uC,)F(2) = u(2)F(p(z)) = u(z)F(a) = 0, while if G(z) = u(z),
then (uC,)G(z) = u(2)G(@(2)) = u(a)G(z). Thus {0, u(a)} < o(uC,).

On the other hand, since the range of uC, is one-dimensional,
o(uC,) contains at most two elements and therefore o(uC,) = {0, u(a)}.

In determining the spectra of the remaining compact operators
of the form u#C, we will make use of the following theorem of
Denjoy and Wolf.

THEOREM A (Denjoy [2], Wolf [6]). Suppose ¢ is an analytic
Sunction mapping D to D. If @ is not conformally equivalent to
a rotation about a fixed point, then there exists a unique 2’ € D for
which @, (z) — 2 for all zeD. If @ s continuous at 2', thenm
o) =7

Suppose p € A and @: D— D. It is easy to show that if ¢ = 2,
then there is at most one fixed point of ¢ in the open disc D. There
may, however, be infinitely many fixed points on the boundary of
D. However, if the function @ is not equivalent to a rotation, then
Theorem A asserts that there exists a unique fixed point z,¢ D,
which we call the Denjoy-Wolf fixed point of ¢, for which ¢,(z) — z,
for all ze D. The spectrum of a compact operator of the form «C,
will depend on the location of the Denjoy-Wolf fixed point of .

THEOREM 2.2. Suppose uc A, pe A, ||p|| =1, @ is not a constant
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Junction and @ has all its fized points on the unit cirele. If uC,
18 a compact operator, then uC, is quasinilpotent.

Proof. Let z, be the Denjoy-Wolf fixed point of ¢, which by
hypothesis has modulus 1. Since %«C, is compact, Theorem 1.2
implies u(z,) = 0. Let V = {e"|u(e”) = 0}.

Choose ¢ > 0. As in Theorem 1.2 there exists an open set U
such that U>V and |u(t)] < ¢ for all te U. Also, since D\U is com-
pact there exists », 0 < » < 1, such that |p(w) < » for all we D\U.
Since {p,} is a bounded sequence and hence a normal family, there
exists a subsequence {p,,} such that {p,} converges uniformly on
compact subsets of D. In particular, {p, } converges uniformly for
2l <r. Butoe,(z)—z forall zeD. It follows that {p,(z)} converges
uniformly to z, for |z =< 7.

Now choose 6 >0 such that {scD||s —z| <d}cU. Since
@ (w) — 2, uniformly for |w| < r, there exists a positive integer N
such that |p,(w) —z|<d if ==N and |w Z7r. Thus
o, ({w]lw! <)) cU for n = N. Therefore, for each zc D and each
positive integer %, at most N elements from z, p(2), ---, @,(7) lie in
D\U. From the definition of U, if t¢ U, then |u(t)] < e. Hence for
all ze D and n = N,

[wCo)"f1(2)] = |w(z) - - - wl@,-(2NAPu(2)] = {[ul[¥e (1] .

Therefore [[(uC,)"|| = [[ul|"e"™™ and so [[uC,ll,, = lim, ... [[(wC,)"|["" =
This holds for all ¢ > 0; consequently |[uC,l|,, = 0 as required.

m

We next show that if 4C, is a compact operator on 4 and if @
has a fixed point z, in D, then g(uC,) = {u(z,)®'(z,)"|n is a positive
integer} U {0, u(z,)}. This will be proved first for z, = 0 and then,
by a standard argument, extended to arbitrary fixed points z, in D.

LEMMA 2.8. Supposeuc A, pe A, llpll £1 and o(0) =0. Then
u(0) € a(uC,) and u(0)®'(0)" € o(uC,) for every positive integer n.

Proof. (i) wu(0)eo(uC,) since no feA satisfies u(0)f(z) —
u(z)f(p(z)) = 1. For, evaluating at z = 0 gives u(0)/(0) — u(0)f(0) =
0=+1.

(ii) If »'(0) = 0, then ¢ is not a conformal map of D onto D.
Therefore if '(0) = 0, the composition operator C, is not invertible
and so uC, is not invertible. Thus if ¢'(0) = 0, then u(0)p'(0)* = 0¢
o(uC,) for every positive integer =.

(iii) If w(0) = 0, then again uC, is not invertible and therefore
if u(0) = 0, then u(0)p'(0)" = 0 e o(uC,) for every positive integer n.

(iv) Finally if «(0)p'(0) = 0, we will prove that u(0)p'(0)"e
o(uC,) for every positive integer n by showing that for each such
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integer n, the function z" is not in the range of (u(0)®'(0)* — uC,).

Suppose the contrary, that for some positive integer = there
exists fe A with u(0)p'(0)*f(2) — w(2)f(p(z)) = z*. Write f(z) = z"f(2)
where f,e A and f,(0) = 0. Then f,(z) = f,(0) + <(|2]). Also let
u(z) = u(0) + <(Jz]) and @(z) = @' (0)z + 7(|z]*). Then

w(0)@'(0)"f(2) — u(2)f(p(2)) = 2"
is equivalent to

u(0)p'(0)"2"[ f(0) + (|zD] — (w(0) + & (|2))(@"(0)"2" + 7 (|2|"™))
X (fi(0) + 7(|2])) = 2

or
(1) [#(0)2'(0)"fs(0) — u(0)p"(0)"fo(0)]2" + (|2"*) = 2" .

If m # n, then the left side of (1) has order m and the right side
has order =, a contradiction. On the other hand, if m = =, then
the left side of (1) has order at least n + 1 since the coefficient of
z* vanishes, while the right side of (1) has order », which again is
a contradiction.

Hence for each positive integer =, u(0)p'(0)" € a(uC,).

LEMMA 2.4. Suppose 0 =ucd, lp|| £1, p(0) =0 and ¢ is not
a constant function. If N is an eigenvalue of uC,, then \ € {u(0)p'(0)*|n
18 a positive integer} U {u(0)}.

Proof. Suppose \ is an eigenvalue of uC, with f as correspond-
ing eigenvector. Then A\ == 0 since ¢ is not a constant function and
the algebra A has no zero divisors. Write f(z) = az™ + 27(|z|™™),
m=0, uiz) =bz" + &z, r =0 and @(z) = ¢z* + (2", s =1,
where abc == 0. Then \Nf = (uC,)f becomes

Maz® + ()] = [ba + (2l Hlalez + (2" + ()]
or
a)\'zm + ﬁ(]z1m+1> — abcmzr+ms + ﬁ({zlr»kms+l) .

Equating powers, we get m = r + ms and a:n = abc™.

Since r and m are nonnegative integers and s is a positive
integer, m = » + ms implies (i) r =m =0 or (ii) » =0 and s = 1.
In the first case, b = u(0) and so a:n = abe™ implies N = u(0), while
if =0 and s =1, then b = u(0), ¢ = @'(0) and ax = abc™ implies
A = #(0)p'(0)™ for some positive integer m, concluding the proof.

THEOREM 2.5. Suppose 0 £ ucd,ped,||lpl| £1, 0) =0, ¢ is
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not a constant function and uC, is a compact operator. Then
ouC,) = {w(0)p'(0)"|n is a positive integer} U {0, w(0)}.

Proof. By the Fredholm alternative for compact operators, every
nonzero element in o(uC,) is an eigenvalue. It follows from Lemma
2.4 that the only possible eigenvalues of uC. are %(0) and u(0)®'(0)"
for positive integers =; on the other hand Lemma 2.3 shows that
each of these numbers is in o(uC,). Hence d(uC,) = {u(0)p'(0)*|n is
a positive integer} U {0, u(0)}.

I should like to thank the referee for greatly simplifying my
original proof of Theorem 2.5.

For arbitrary z,€ D we have

THEOREM 2.6. Let uc A, pc A, ||lp| £1 and uC, be a compact
operator on A. Suppose z, is the Denjoy-Wolf fixed point of @.

(i) If @ is a constant function, then o(uC,) = {0, u(z,)}-

(ii) If @ is mot a constant Jfunction and |z| =1, then
o(uC,) = {0}.

(iii) If @ is mot a constant function and |z,| < 1, then o(uC,) =
{u(z)p'(z)"|n is a positive integer} U {0, u(z,)}.

Proof. The only statement that has not been proved is (iii).
Also if w = 0, then certainly o(uC,) = {0}.

Thus assume u %= 0, @ is not a constant function and ¢(z,) =
zeD. Let p be the linear fractional transformation p(z) =
(2, — 2)/(1 —z,2). Then p maps D onto D and pep ==z2. If we
define S by Sf(z) = f(p(z)) for ze D, then S is an isometry on A
and S = S7'. Let 4 = pogpop and u*(z) = u(p(z)). Then u*e A and
Su*Cy)S™ = uC,. Indeed,

[S*Cy)ST'If = [SW*C)I(f o) = S[u* - fopoar]
=W ep)-(fepoyop) =u-(fop) = (uC)S .

Consequently o(u*Cy) = o(uC,). Since (0) =0, it follows from
Theorem 2.5 that o(u*Cy) = {#*(0)4'(0)"|n is a positive integer} U
{0, w*(0)}.  But u*(0) = w(»0)) = w(z,) and ' (0) = @'(z,). Thus
o(uC,) = {u(z,)p'(z,)"|n is a positive integer} U {0, u(z,)}.

REMARKS. 1. By considering the adjoint (uC.)* of uC, it can
be shown that each nonzero eigenvalue of #C, has multiplicity one.

2. Operators of the form uC, on A for those @ which are con-
formal maps of D onto D were considered in [3]. Except for the
case where @ has finite orbit, their spectra consist of circles, discs
or annuli centered at the origin.
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3. Caughran and Schwartz [1], Schwartz [4], and Shapiro and
Taylor [5] have considered compact composition .operators on H”.
Included in their papers are geometric conditions on ¢ insuring that
C, be compact. They also determine ¢(C,) when C, is compact. It
is shown that if C, is a compact composition operator, then ¢ has
a fixed point z, in D and ¢(C,) = {¢'(z,)"|n is a positive integer}U
{0, 1}.

4. The arguments leading to Theorem 2.5 are valid if ue H”
pe H”, |p(z) <1 for |2/ <1 and uC, acts on H?, 1 < p < . Thus
for such u and o, if o(z,) = 2,€ D and uC, is a compact operator on
H?, then again o(uC,) = {u(z,)9'(%)"|n is a positive integer}U
{0, u(z,)}.
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