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Suppose M and N are PL manifolds and f: M->N is a
proper PL map. Triangulate M and N so that / is simplical
and let X be the dual complex in N. Then for each open
simplex σ in X, f'Ko) is a PL submanifold of M, so the
stratification of N by the open simpliceβ of X pulls back
to a stratification of M. In other words, any such PL map
can be regarded as a map of combinatorially stratified sets
in which each ^-stratum of therange is a disjoint union
of copies of Rn. Here we prove the analogous theorem
for a smooth map f:M->N between smooth manifolds.

An essentially similar (but simplified, since 1.1 is obvious) ver-
sion of our proof would also apply to PL maps between PL mani-
folds, so our main theorem applies in the PL category as well. The
theorem will be used elsewhere [2] to show that Cohen's notion of
transverse cellularity [1] may be applied in the smooth category as
well.

Let N be a smooth ^-manifold imbedded in some high-dimen-
sional Euclidean space RlY. An imbedding h: X —> N of a simplical
complex X into N is called a smooth imbedding if h~\dN) is a sub-
complex and, for every ^-simplex σ of X, there is a neighborhood
U of h(σ) in RN and a diffeomorphism g: U->RkxRN~k such that
gh: σ —> Rkx {0} is the linear map of σ onto the standard A -simplex
AkaRk. (The use of RN is solely to avoid a special discussion of dN.)
If X is a combinatorial manifold and h is a homeomorphism, then
h is called a smooth triangulation of N. Combinatorial triangula-
tions of smooth manifolds always exist (see e.g., [4]).

If f:M-*N is a smooth map of manifolds, a smoothly imbedd-
ed complex h: X-+N is said to be transverse to / over a closed
fc-simplex σ in X if the composition p2gf: M —> RN~k has no critical
points near f~\h(σ)). In particular, f~\h{σ)) is a smooth submani-
fold of M. The definition is independent of the choice of U, g, or
the imbedding of N in RN. Our goal is the proof of

THEOREM 0.1. Let f: M—> N be a proper smooth map of smooth
manifolds, XaN a smoothly imbedded simplicial complex, KaX
a subcomplex of X transverse to f.

If XΠdNdK or dN is transverse to f then there is an ambient
dίffeotopy ht: N —> N, fixed near K, from the identity h0 to a map
ht such that hx{X) is transverse to f. Moreover, the diffeotopy ht
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may be made arbitrarily small in any Riemannian metric on N.

In particular, if f:M~^N is any smooth map between closed
smooth manifolds, then N has a smooth triangulation transverse to
/, and so / may be regarded as a strata preserving map of smooth
stratified spaces in which each stratum of the range is a disjoint
union of copies of Rn.

Our result is in fact somewhat stronger: if σ is a closed simplex,
f^h^σ) will be a topological manifold with smooth interior and
boundary f^hidσ) (see Remark 1.2).

Some notation. L e t r: Rk —> R b e t h e m a p r(xl9 •••,%) = (Σxϊ)ί/2,

aβk = r-i[o, a], for a > 0. If M is a manifold, M denotes interior

of M. Let aP = αlΓx xαJS1 (fc-times). For any X, the identity

map X —> X is denoted idx.

l Collaring smooth maps near 3zf • Let J^ be a ά-simplex in
i2fc with barycenter at the origin. Suppose / : V-+ RkxRn is a pro-
per smooth map of smooth manifolds and suppose the complex dJk

is transverse to /.

PROPOSITION 1.1. For some 0 < a < 1 and ε > 0
(1) a smooth m — n — 1 manifold L

( 2 ) α diffeomorphism c: Bk —• z/fc

( 3 ) α diffeomorphism

c:Lx(a, l)xεBn >/"1[c(J5*

(a, l)xεBn-L->RkxRn

Urc-1) xiάRn

<=—> RxRn

\'

commutes.

Proof. Case 1: w = 0.

Proo/ o/ case 1: Let w: Rk-> τB

k be the smooth vector field
grad(r). The trajectories of w are the rays from the origin, so,
since Δk is convex, there is a unique trajectory through each point
of dΔk.

For each i-simplex σ of dΔk let h°σ: R
j ~> Rk be a linear imbedd-
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ing such that σa image h°σ. By Picard's theorem, there is a unique
smooth mapfeσ: R

jxR —> Rk such that hσ\Rdx0 = h°σ and dhσ carries
the vector field grad(p2: R* x R —> R) to w. If τ is a (fc — l)-simplex
then fer is an imbedding onto a neighborhood of τ in Rk.

Order the (k — l)-simplices (faces) τ0, , τk of 3z/fc. Any
i-simplex σ of 3Jfc is contained in k — j faces τh, , r<Jfc__5., ΐz < ίι+1.
Define the map qiχ from a neighborhood of τ ί z to R by gίz = pjι~}-
and on a neighborhood Uσ of er define gσ: Uσ —> JR*"~y by (gα)j = g ί r

Observe:
( 1 ) Since / is transverse to dΔk we may choose Uσ so small

that qσf: V->Rk~3' has no critical values near 0 in Rk~~j.
( 2 ) dqσ(w) = grad(^ H hj>*-i) where pt: Rk~j-^ R is projec-

tion on the i th factor.
( 3 ) If σaσ', then qσ>\Uσ is just gσ followed by a projection.

Claim. There is a smooth vector field v on F near f~\dΔk)
such that for every ^-simplex σ of 3J/c, and ?/ sufficiently close to
Γ\σ), d{qj){v{y)) = d(qσ)(w(f(y))).

Proof of claim. Use induction over simplices. Suppose v has
been defined near f~\(j — l)-skeleton), 0 ^ j <> k — 1. Let a be a
i-simplex. Then, by (2) and (3) above, d(qσf)(v) = dgσ(w) = grad
(PiH hPfc_i) near f~~\dσ). By (1) there is a vector field t;ff defined
on / " X ^ ) such that d{qσf){vσ) = grad(p1+ + p w ) . Let φ: f~\Uo)->
[0,1] be a smooth map with support where v is defined and such
that φ — 1 near f~\dσ). Then >̂v + (1 — <p)vσ is an appropriate ex-
tension of v near σ, completing the inductive step and so verifying
the claim.

Now choose 7 > 0 so small that for any i-simplex σ of dΔk,
q~\Ίlk~5) is contained in Uσ9 qσ: Uσ —> Rk~d is nonsingular over ylk~j

and v is defined on {qσf)~\Ύlh~ά)* Without loss of generality, let
Uo - q:\Ίlk~ό), so d(qj)(v(y)) = d(qσ)(w(f(y))) throughout f~\Uσ).

Let μ: R—> [ — 1, 1] be a smooth map such that μ(x) = — α?/| α? |
for | α | Ξ> 7/2, μ(x) = —x for cc near 0, and μ( —7/2, 7/2) ~> ( — 1, 1) is a
diffeomorphism. Define pk_5\Rk~ά->R by P w f o , •••, α&*_y) =
Πi=/ μ(%i) For each i-simplex σ of dΔk, define ί?σ = ρk-jqa: Uσ -* iϊ.
Notice that if <7Ctf', then |θσ coincides with ρσ, except perhaps where
\Qaft)\<Ύβ> s o m e 0<i<k — j . In particular ρa coincides with
pσ, except well within Uσ. We may therefore consistently define a
smooth p: Rk -> [0,1] as follows. Let Z7 = \JβUa,σ in 3J*, and let
σ(x) denote the lowest dimensional simplex of BΔk for which Uσ{x)

contains x.

( i ) If x is in Δk - U, let /o(αO = 1
(ii) If x is in R* ~ (^fe U U), let |t>(α?)=-l
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(iii) If x is in Z7, ρ{x) = pσ{x)x.
Clearly p~\0) — dJk and p \ Δk > 0. Define new vector fields w'

and v' over Rk and f"\U) by w\x) = |θ(x)^(x), 1/(3/) = p(f(v))v(y)
for a? in ϋ?fc and y in f~\U). Just as for w and t; we have, for
any i-simplex σ of dΔk and 2/ in f~\U), d(qj)(v\y)) = dqa{w'{f(y))).
In other words, suppose we define the vector field %σ in Rk~5 by
^σ = ft-y gradO^H h^-y). Then, in fact, we have d(qσf)(v'(y)) =
dqa(w'{f{y))) = uσ(qj(y)).

Choose ε>0 so small that any point s in p~\ε) satisfies qτ(s)> — 7/2
for some face τ of dAk. Then for σ = σ(s),

d ) ) ) ( ) ) Σ ^ ±

since μ(qσi) > 0 in ifc, μ\qσ) ^ 0 and for at least one term (where
Qo, = qτ), μ'(qσi) < 0. Then, for f(y) = β, d(pf)v\y) = (d/θ)w'(β) =
d(pk-jQσ)w(8) = d(pk_s)Uσ(qσ(8)) <0, so p and /0/ are transverse to ε.
Define S and L to be the smooth suqmanifolds p~\ε) and f~\S) of
Jfc and F respectively. Since {dp)wr < 0 at all s in S = p~\e), each
trajectory of 10' intersects S precisely once. Similarly, each trajec-
tory of vf intersects L precisely once.

Picard's theorem then provides smooth imbeddings cQ: £x[0, 00)—>
Δk and cQ: Lx[0, 00) -> f~\Ak) whose trajectories co(sx[O, <*>)) and
co(lx[O, 00)) have tangent vectors w' and v' respectively.

Claim 2. Diagram A below commutes.

Lx[0, oo)Aj f!!>Sx[0, 00)

[0, 00)

DIAGRAM A

Proof of Claim 2. Unfortunately, /*(V) Φ wf, so the proof is
not immediate. For (I, ί0) in Lx[0, °°), σ any ^-simplex in dΔh, let
*σ denote the following condition:

I has a neighborhood L in L such that for some codimension 1
manifold M in Rk~j transverse to uk-ί9 co(LxQcz(qσf)~\M).

Then notice:
(a) If σ = σ(f(co(l, ί0))), so d(qσf)v' = wσ, then the unit flow of

Lxί 0 in Lx[0, co) is mapped by qafo0 to the flow of M along ^fc_i,
so *σ will continue to hold for ί ^ ί0 as long as σ = σ(f(co(l, ί))).
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(b) If σ is a simplex in σfadAk

f then *σ holds wherever pσ = ̂ oσ,,
i.e., except well within Uσ. Indeed, qσ is just qσ> composed with a
projection p. Let M = p~\M'), where Mf is the manifold of condi-
tion *,,. Since we assume pa, = 1oσ, dp(uσ) = wff, so uσ is transverse
to iίf.

(c) If σ = σ(/c(ϊ, 0)), then *σ holds for ({, 0). Indeed, take M
to be Pk-j(s)', we showed above that uσ is transverse to M and de-
fined L so that it coincides with (qσf)~\M) near c(i, 0).

(d) Since the trajectories of uσ never increase their distance
from 0 6 Rk~j it follows that if σ = σ(fcQ(l, t0)), then σ(fco(l, t)) c <7
for all t^>t0.

Combining a — d, it follows that condition *σ holds for any (7, £)
when <τ = σ(fcQ(lf ί)).

Now, by definition, A commutes over 0e[0, ©o). The set of
values £e[0, ©o) over which A commutes is clearly closed; we show
that is also open. Let ί0 be a point such that c^fcύ(LxQ — SxtQ.
Choose any I in L and let σ = σ(fco(l, t0)) be a ./-simplex.

Then there is a neighborhood L of I and a codimension one
manifold M of i ϋ ^ transverse to uσ such that co{LxQa{qjyι{M).
Then f~\M) contains a neighborhood S of fco(l,to) in Sxίo> but
since dqσ(wr) = tcσ, the unit upward flow of S in Sx[0, ©o) is map-
ped by qσc0 to the unit upward flow of M under ua. By condition
(a) above, the unit upward flow of L in Lx[0, oo) then is mapped
by c^fco to the unit upward flow of c^fc^L) in Sx[0, oo). Hence
A commutes near (i, ίo) Since / is proper, L is compact. Thus a
repetition of our argument near a finite number of points ϊ, shows
A commutes over a neighborhood of t0. Hence A commutes every-
where, verifying Claim 2.

It remains only to show that c extends to an imbedding of Bk

in i \ Each trajectory of w' intersects both SxO and the boundary
of a small ball about 0 in Δk exactly once. It is then a classical
result that the ball can be smoothly deformed so that the interior
of a collar of its boundary coincides with Sx(0, oo), giving an ex-
tension of c over the rest of Δk.

Case 2. n > 0.

Proof of Case 2. Since / is transverse to dΔk the map p2f: V—>
Rn is transverse to 0 near dΔk. Then there is a neighborhood U of dAk

in Rk such that f~\U) is a smooth submanifold of V, and /1 f'\U)-*U
is transverse to dAk. Apply Case 1 to get c: Lx(0,1) —> f~\U),
c: Sx(0f l)—> U such that c~ιfc commutes with projection to (0,1).
Extend c to an imbedding c: Sx(0, l)xRn —> UxRn by crossing with



250 MARTIN SCHARLEMANN

Since c~ιf is transverse to Sx(0, 1), it follows from classical
tubular neighborhood theory that c extends to a map c: Lx (0, 1) x
εBn —> V such that c~ιfc commutes with projection to (0, l)xεBn.

REMARK 1.2. Since each trajectory of w' (resp. v') lies in a
trajectory of w (resp. v) and each point of dΔk (resp. f~\dΔk)) lies
in a unique trajectory of w (resp. v), each point of dΔk (resp. f~~\dΔk))
is the limit point of a unique trajectory of wr (resp. vf). Therefore
the smooth imbeddings c: Sx [0, 1) —> Δk, c: Lx [0, 1) —> f~\Δk) given
by e(s, ί) = co(s, ί/1 — ί), c(ί, ί) = co(i, ί/1 — t) extend to topological
collars c : S x [ 0 , l ] - > / and c : L x [ 0 , l ] - > Γ ( / ) of dΔk and f~\dΔk)
respectively.

2* Proof of the theorem* First consider the following special
case.

LEMMA 2.1. Let f:M—>RkxRn be a proper smooth map trans-
verse to dΔk = d^fxOcfi^xO and let δ: RkxR*-+ (0, <>o) be continuous.
Then there is an ambient diffeotopy ht: RkxRn -^ RkxRn, fixed outside
a compact set in Δk x Rn, from the identity h0 to a map h1 such
that hx(Δk) is transverse to f. Furthermore d(ht(x), x) < δ(x),

Proof. Sinoe ht will be fixed outside a compactum, we may
assume δ is constant.

Let ε, L, c, c, a be as in 1.1. With no loss of generality, let
e = δ. Since critial values of p2f:M—>Rn are meager, by Sard's
theorem, there is a regular value y0 in eBn. Let f 4, 0 ^ ί ^ 1 be a
diffeotopy of idRn with support in εBn carrying 0 to y0. Let
μ: R —> [0, 1] be a smooth map such that μ(x) — 1 for x near
(— oo, a], μ(x) = 0 for x near [1, oo). Define

ht: c{Bk) x Rn > c(Bk) x Rn

by ht{c{x), y) = (c(x), φm]x])(y)). Extend ht by the identity to the
rest of RkxRn.

We claim hγ(Δk) is transverse to /. Certainly h1c(aBk) is trans-
verse to / , for hxc{aBk) — aBkXψ^y) = aBkxy0. Since μ(\x\) = 0

for \x\ near 1, h is fixed near dΔk, so, by hypothesis, hx(Δk) is trans-
verse to / near dΔk.

Define h: c(Lx (a, l)xεBn) -+ c(Lx (a, l)xεBn) by h(c(l,r,y)) =
c(l, r, fairly))* Then h^fh — /, which is transverse to c(Bk — αJ5fc),
by 1.1. Since h is a diffeomorphism, h^f is also transverse to
c(Bk — aBk), so/is transverse to h1c{Bk — αΊ?fc), completing the proof.
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Proof of 0.1.

Case 1: XndNaK.

The proof is a straightforward induction over simplices of
X — K; suppose ht has been constructed so that / is now transverse
to the (k — l)-skeleton. Apply 2.1 to a neighborhood of each
A -simplex, the neighborhoods chosen so that / is already transverse
to the &-simplices wherever neighborhoods overlap. This completes
the inductive step, hence the proof in this case.

Case 2. dN is transverse to f.

Apply Case 1 first to /1 f~\dN) isotoping dN until the subcomplex
X Π dN is transverse to f\f~\dN). Extend to an isotopy of N.
Since / is transverse to dN, after the isotopy / will be transverse
to Xf)dN. This reduces the problem to the previous case.
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