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THE LEBESGUE CONSTANTS FOR (f,d,)-SUMMABILITY

RicHARD A. SHOOP

It is well-known that the Fourier series of a continuous
periodic function need not be pointwise convergent. This
fact is a consequence of the unboundedness of the Lebesgue
constants, which are the norms of the partial sum operators.
It is equally-known that the Fourier series of a continuous
function is uniformly (C, 1)-summable to the value of the
function. Thus, the question naturally arises as to which
summability matrices are effective in the limitation of Fourier
series of continuous functions. In this paper we consider
a very general class of matrices, the (f, d,) means, and show
that their Lebesgue constants are unbounded. An interesting
corollary is that the Fourier series of a continuous periodic
function need not be everywhere almost convergent.

If A = (a,,) is a regular summability matrix, the nth Lebesgue
constant corresponding to A4 is defined by

S a,, sin (2% + 1)t
k=0

. Ldt .
sin ¢

(L.1) L,(4) = '?{ N

The sequence {L,(4)} is of considerable importance in the theory of
Fourier series in that the unboundedness of this sequence implies
the existence of a continuous function whose Fourier series fails to
be A-summable at a specified point {1, pp. 58-60]. Conversely, if

g)man,,] <o (m=0,1, )

and if the sequence {L,(4)} is bounded, then the Fourier series
of each function continuous on an interval [a, b] is uniformly A-
summable to the value of the function on [a, b]. Extensive study
of the Lebesgue constants has been made by a number of authors
including Livingston [4] for the Euler means, Ishiguro [2] and Newman
[7] for Taylor summability, Lorch [5] for the Borel exponential and
integral methods, Sledd [10] for Sonnenschein matrices, and Lorch
and Newman for [F, d,] means [6], and for Hausdorff means [8].

The (f, d,) means are defined as follows: Let f be a nonconstant
function, analytic on the disc |[z| < R for some R > 1, and let {d,}
be a sequence of complex numbers, such that for all », d, = — f(1).
The elements of the matrix A are then given by the relations

aw =1, a,=0 (k=1
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S tdy S
(1.2) I O+d 2 aud” .

This family of matrices was introduced by Smith [11] as a generali-
zation of the [F, d,] means of Jakimovski [3], to which they reduce
if f(z) = 2. In case d; =0 for all j, (1.2) becomes

[F@F = S aus*,

and A is called the Sonnenschein matrix generated by f [12]. The
purpose of the paper shall be to derive an asymptotic expansion for
the sequence {L,(A)} for a class of regular (f, d,) matrices. In the
final section, we shall demonstrate that the unboundedness of the
Lebesgue constants for a particular (f, d,) mean implies the existence
of continuous functions whose Fourier series fail to be everywhere
almost convergent.

2. Preliminaries. In addition to the assumptions made regarding
the function f and the sequence {d,} we further assume that

(2.1) the Maclaurin coefficients of f are real and nonnegative;

(2.2) |f(&)] <1 for |2|=1l{z+1);
(2.3) fA)=f'1)=1, while f'Q)+#0;
(2.4) d,=0 forall =n;

(2.5) J,14+d,) =00

Condition (2.5) is necessary for regularity of A, as is condition
(2.2) in case d, = 0 for all n. Moreover, conditions (2.1), (2.4), and
(2.5) are sufficient for regularity [11]. The following two lemmas
will be useful in §3. The first of these is due to Lorch and Newman

[6].

LEMMA 2.1. Let |a;| =1 and |b,| £1 for k=1, ---,n, and let
A be a positive constant. If |a, — b,| < Ac, for k=1, ---, n then

€n n n
MMa, — 10| A ¢
k=1 =1 =1

LEMMA 2.2. Let K be a positive constant and let a, 8 € [0, w/2].
If | — e"| < K, then |a — G| < K=x/2.

Proof. e™ — e = 2iexp [i(la + B)/2] sin [(a¢ — B)/2], so
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e — ¢%| = 2| sin[(a — B)/2] = %!a ~-8l,
and the lemma follows.

3. The asymptotic behavior of {L,(4)}. According to (1.1),

Ky
o Sint

L) =2{"
where

K, =S a,.sin(2k + 1)t .

From (1.2) and (2.3) it follows that

= Lo SED | gy S £,
K, 27/( J'I-:Ix 1+d; ].1;[1 1+d }.

Define
Ry = f() + d;
p;e'i = f(e™*) + d; .

The assumptions made about f cause its Taylor expansion about
2, = 1 to be of the form

(8.1 f(z2) =2z +axz — 17+ O(z — 1)*,
where a, = f'(1)/2 > 0 by (2.1). It follows that
(3.2) Rje'i = ¥ + d; — 4dat® + OF)
(8.8) 0" = e + d; — 4a,t* + O(t°) .

Since d; = 0 for all j, these relations imply that

(3.4) p; = R; + Ot
and

tz
.5 i = —'31' .
3:5) 7 +OQ+d)

Now (3.4) implies that

P Kt

7

so that

S +d) = KHE,
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by Lemma 2.1. It follows that

+d
X exp [—% 3505+ 95) | + OCHE)

Hence,
Kol = (2 )[sin| 3 260, — 90 + ]| + 0ty
Suppose that 0 < £ < 7/2. Then
Se LKl gy
o sInt
@8 cn R t sin [% 2.(0; — @) + t:H
- So Iy T4 sin t dt + O(H,E) -

We may replace sint by ¢ in the integral on the right of (3.6),
introducing an error of O(¢).

Thus,
)y
in| LS 6, — o,
- SEE 1 fjd- i Sm[z - (6; P t]ldt + 08 + O(H,8) .

Using the expansion
.1
sin [—2— 2.0 —@i) + t:l
.1 1 .
= sin Ez‘,(ﬁj — ;) {cost + cos ?2(0,- — ;) |sint,

we obtain
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S ﬁl—{-d i‘smI:_LZ(ﬁf*%)—l—t]—sin[éﬁ(ai_%ﬂldt
ég °°Stdt+se Si?tdt=O(E).
Therefore,
| S
(3.7 V. lsm S0 — @)
- 3071:111 +de ’ 7 dt + 0(&) + O(H,&) .

We now estimate (Sz/len}/sin t)dt. To this end, define Re®” = f(e*).
§
From (8.1) it follows that

=1 — da,® + Ot ,
or
(3.8) R =1 — 4a,8’(A + ty(t)) ,
where ++ is bounded in a neighborhood of ¢ = 0. Now

R; =|f(") + d;
= R* + 2Rd; cos 6 + d3
< R* + 2Rd; + d} .

Substitution of right-hand side of (38.8) for R yields

Ri <1 + 16a3t'(1 + ty(t))* — 8ast*(1 + ty(0))

3.9
®9) L d o+ 2d; — 8ad (L + ty(2))

If ¢ is sufficiently close to zero, then |ty(¢)| < 1/2, and the right-hand
side of (3.9) is dominated by
(3.10) 1+ d;)? — 1 + d;)[4a,t* — 36ait'] .

If we further insist that ¢ be less than (18a,)"'%, then it follows that
36ait’ < 2a,t? so (3.9) and (3.10) combine to yield

(3.11) R =1 +d;) —2a,*(1 + d;) .

Using (3.11) and the familiar inequality 1 + x < e®, valid for real z,
we obtain

R; )2<1_ 2088 _ oo ( 2a2t2>
< a 1+d; = Xp( 1+4d;/’
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so that

1

=Ze JH L
111+d *p[—aLr] .

Analogously, one shows that

ﬁ[ T 0i < exp|—a,H,t.

+d;
Hence,
[‘Kvn‘ é_ ! 2 é - antz ’
| s g Fllig | =expl-atltl]
and

e K Ct
S Kol g ézxwdt O[z " exp (—H,£)] .
sin ¢ 2 ¢

This estimate, together with (3.7) gives

sin = Z‘,(ﬂ
S”'Kldt_gﬁ E; \ dt
(8.12) v sint 0i=1 1 + d; t

+ 0@) + O(H,£) + O[¢" exp (—H,&].

We now replace the product appearing in the integral on the right
of (3.12) by a more managable expression. By equation (3.2)

Fle™) +d; =1 + d; + 2it — (2 + da)t* + O,
so that

f@ vd; 2t 2+4ay, £
J€ T8~ 4 +0
1+d; 1+d, 1+d; <1+dj>

2it [ da, 2d; ]21 £
= — E] t 0 3
exp{l Td, dtd TdxarliT <1 + dj)

By Lemma 2.1, it follows that

3.13) 11 Jl‘fi%%ﬂ = exp (2iH.t — da,H, 1 — S,%) + O(H,t)

where S, =237, d;(1 + d;)"% Hence,

T = D= Uad, + SO} + O,

.

J

and (3.12) becomes
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.1
K, | : . SlnE >.0; — @;)
S Raial 29/ F AES S exp [—(4a,H, + S,)i?] dt
o sin ¢ 0 t

+ 0@ + O(H,&) + O[¢ " exp (—H,&)] .
From (3.13) it follows that
exp (1 >.60;) = exp (21H, t) -+ O(H,t) .

Lemma 2.2 now implies that
>.0; = 2H,t + O(H,t") .
In similar fashion it is shown that
Sip; = —2H,t + O(H,t) .

Hence, sin1/2 >} (0; — ;) = sin 2H,t + O(H,t*), and

+ O(c) + O(H,&) + O[¢ ' exp (—H%EZ)] .

Here, the interval of integration may be extended from [0, &] to
[0, 7/2] with an error of O[¢'exp(—H,)]. This having been done,
we now let & = H,*5. Since H,-— > as n— <, all of the error
terms in (3.14) become o(1). We now make the substitution u, =
2H, and s, = 4a,H, + S,. Thus

L.(A) = % S exp (~—sﬁt2)int%t—ldt +o(1).

Sinee, for our choice of u, and s,, s, — oo and u’/s,— oo, the derivation
of [6; §5] may be applied, yielding

(3.15) L,(4) = 2 log ™+ +o(1),
is s,
where
a= 2 C+£Slsmtdt _2 Vl-‘i— (sin t|ldt
Tt T Jo ¢ zhitlx J

and C denotes Euler’s constant. In terms of H, and S,, our expansion
takes the form

L.(4) = 2 log (L> +a+ o),

4a.H, + S,

from which it is clear that {L,(4)} is an unbounded sequence. We
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note in conclusion that if d; = 0 for all j, then S, =0 and H, =
so that for Sonnenschein methods we have

L,(4) = 2 log
T

2

which is the result obtained by Sledd [10].

+a + o),

4. A special case. A regular matrix A is said to be strongly
regular provided every almost convergent sequence is A-summable.
Lorentz [9] has shown that a necessary and sufficient condition for
strong regularity of a regular matrix A = (a,;) is that

(4'1> Hmn i iank - a/vn,/::‘rll = 0 °
k=0

If we take f(2) = e ' and d, = 0 for all n, then the resulting (f, d,)
mean is the Borel matrix:

a = _"”_,_n_k_
nk k!
Now
=Sl _ _ nsn 1 . B '
2l = Gun| =€ =T 1)'[11 (k+1)]+ z(k w[(k 1) —n];
o n—1 /}/LkH n— ,n— co kIl ji
—¢ [7 (k + ! = k! = (k + 1)!

= [H5p) ]

By Stirlings formula, n"/nle” = O(n~"%), so that e "[2(n"/nl) — 2] 0
as n-— o, and A is strongly regular. It follows that there exist
continuous functions whose Fourier series fail to be almost convergent;
for if this were not the case, then the Borel matrix would sum the
Fourier series of each continuous function, contrary to the unbound-
edness of the Borel-Lebesgue constants.
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