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Let X be a compact subset of the complex plane. Let
the module Z2(X)Z, be the space of all functions of the
form

"'o(z) + T1(Z)§+ coe ,’.mgm

where each r, is a rational function with poles off X. We
prove that 2(X)Z, is dese in L?(X) for all 1< p < co and
RB(X)Z, is dense in Z(X) if X has no interior point. As
corollaries, we also prove that $2(X )%, isdense inlip (a, X)
for all 0<a<1 and S#(X)Z is dense in D(X) for the same X.

1. Introductions. Let X be a compact subset of the complex
plane. Let the module <#(X).Z%, be the space & + FzZ+---+.Fz"

= {ry(2) + r ()24« + . (2)2"},

where each #; is a rational function with poles off X. 1In [3, 4],
O’Farrell has studied the relation of the problems of approximation
by rational modules in different Lipschitz norms, and in the uniform
norm, ete., to one another.

In this note, we investigate the problem of determining the set
X so that #(X).Z, is uniformly dense in &(X) for each m.

Vitushkin [8] has given a necessary and sufficient condition in
terms of analytic capacities for the case m = 0. In [3], O’Farrell
has given an example of an X such that <2(X).Z is uniformly
dense in &(X) whereas <Z(X) fails to be dense in &(X).

It is apparent that if X has interior, then Z(X)&?, can not
be dense in &(X). Thus we restrict our attention to a compact
set X without interior throughout this note. Let L*(X) = L*(yydm),
where dm denotes the 2-dimensional Lebesgue measure. We prove
the following theorem:

THEOREM. Let X be a compact set with no interior. Then

I. B(X)P is dense in L*(X) for all L< p < o, and
II. AX)ZA is dense in F(X).

2. Proof of theorem. Let p be a (finite Borel) measure on X,
The Cauchy transform #Z is defined by
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) = [ 49
x{ — 2z
It is well known that /2 is absolutely convergent for almost all
2 (dm) and [ belongs to L, for 1 < p < 2 (see [2], p.37). If g is a
SN
function on X, we write § for gdm. Sinanjan [6] was the first to
prove that <Z(X) is dense in L?(X) when 1< p < 2. However, it
is Brennan’s [1] proof that leads to the results we obtain here.
We use the symbol & for the operator 9/6x + i(3/0y) and write
g1 BX)Z, if ngdm =0 for all fe .2 (X)Z,. The following lemma
is a special case of the key lemma in [3].

LEMMA. Let pt be a measure on X. Then pl B (X) P, if
and only if i1 .B(X)P,.

Proof. Because Sfd;z = ﬁ‘lg(gf)ﬁdm for all fe.c2(X), ., (see
[2]).

Proof of theorem. Of course, the case 1 < p <2 is contained
in Sinanjan’s theorem.

Let ge LX), ¢>1, p~'+q'=1, such that g | #(X).Z". Lemma
implies §1.#(X). In particular, =0 if z¢ X. Being the convolu-
tion of g and (e L, A £ r < 2), § belongs to L*(X) for some s > 2,
by the classical Young’s inequality (see [7], p.271). And being the
convolution of § and C”‘,@ is continuous everywhere in the plane.
It follows that ?jz 0 since X has no interior. It is well known that
this implies § = 0 in LX), which in turn implies ¢ = 0 in LX)
and hence #(X).<” is dense in L?(X). Part I is proved.

Let ¢ be a measure on X such that @B X)F,. Lemma im-
plies 71 .92(X).<" and Part I implies Z = 0 and hence p = 0. Part
II is proved.

3. Some remarks. Let & and < be the usual linear topo-
logical space of complex-valued & functions on the complex plane.
Let ||-]l, and ||-]l; be two norms on & and & respectively. .Z(X)Z,
can be regarded as a subspace of Z|y and &|y. We denote the
closure (i.e., the completion) of .#(X).2#, with respect to the norm
I|]l; (restricted to X) by [Z(X)Z,.);, for j=1,2. OFarrell’s
theorems in [3] can be roughly stated in the following general

form:
If ¢—¢ s continuous from (Z,|-|l) to (&,||l,), then
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(2 (X)), = [2), implies [B(X) P pp), = [€].-
As corollaries, we have the following:

COROLLARY. Let X be a compact set with mo interior. Then
I. @ X)Z, is dense in lip(a, X) for all 0 < a <1, and
II. 2(X)Z, is dense in D'(X).

For the definitions of lip(«, X) and D'(X), we refer the reader
to [3].

It is not known whether .22 (X).& is dense in & (X) for all X
without interior. The annular Swiss Cheese of A. Roth [5] has
the property that the continuous function [z]* is not in the uniform
closure of <#Z(X). However, it is not clear whether or not the

function |z| is in the uniform eclosure of .Z(X).~.
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