
Pacific Journal of
Mathematics

ON THE MULTIPLICATIVE COUSIN PROBLEMS FOR N p(D)

K. ADACHI

Vol. 80, No. 2 October 1979



PACIFIC JOURNAL OF MATHEMATICS
Vol. 80, No. 2, 1979

ON THE MULTIPLICATIVE COUSIN PROBLEMS
FOR NP(D)

KENZO ADACHI

Let D be a strictly convex domain in O with C2-class
boundary. Let NP(D)91 < p < oo, be the set of all holomorphic
functions / in D such that (log+ |/|) p has a harmonic majorant.
The purpose of this paper is to show that the multiplicative
Cousin problems for NP(D), 1 < p < oo, are solvable.

!_• Introduction* Let D be a domain in C*. We denote by Sn

the class of bounded domains D in Cn with the properties that there
exists a real function p of class C2 defined on a neighborhood W of
3D such that dp Φ 0 on 3D, Df)W = {zeW: p(z) < 1} and the real
Hessian of p is positive definite on W. For 1 <^ p <; oo f we denote
by NP(D) the set of all holomorphic functions f in D such that
Q>og+\f\)p has a harmonic majorant in D. When p = oo, we assume
that I /1 is bounded in Zλ When p = 1, N\D) is the Nevanlinna
class. E. L. Stout [5] proved that the multiplicative Cousin problem
with bounded data on every domain of class Sn can be solved. In
this paper we shall prove that the multiplicative Cousin problems
for NP(D), l<ί)^oo, can be solved. The proof depends on the Riesz
type theorem concerning conjugate functions and the estimates
obtained by E. L. Stout [5], [6]. The required analysis is available
on strictly pseudoconvex domains, but the geometric patching cons-
tructions in §3 depend on euclidean convexity. Explicitly, the above
results are the following:

THEOREM. Let DeSn. Let {Va}aei be an open covering of D,
and for each a, fa e Np(Ya n D), 1 < p ^ oo. If for all a,βel, fjf
is an invertible element of Np(Vaf] VβΓ\D), then there exists a function
FeNp(D) such that for all ael^Ff'1 is an invertible element of

In the case when D is an open unit polydisc in Cn, theorem for
p = 1 was proved by S. E. Zarantonello [7], and theorem for p = oo
was proved by E. L. Stout [4].

Let A(D) be the sheaf of germs of continuous function on D that
are holomorphic in D. I. Lieb [2] proved that Hq(D, A(D)) = 0 for
q > 0, provided D is a strictly pseudoconvex domain with C5-boundary.
Let DeSn and let D have a C5-boundary. Then, from the above
Lieb's result and H\D, Z) = 0, by applying the standard exact sequence
of sheaves
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0 > z > A(D) —-> A(D)-1 > 0

one can solve Cousin Π-problems with data from the sheaf A(D).
The author is pleased to acknowledge his gratitude to the referee

for valuable suggestions and helps during the improvement of this
paper.

2* ίP-functions* We now state some properties about Hp-
functions. If D c C w is a domain, then for 0 < p < oo, HP(D) is the
space of all functions / holomorphic in D such that \f\p admits a
harmonic majorant in D. When p = oo 9 H

P(D) is the space of all
functions bounded and holomorphic in D. For a relatively compact
domain D in Cn with 3D a real submanifold of class C\ we shall
say that a C2-function p defined on a neighborhood of D is a charac-
terizing function for D provided p(z) < 1 if and only if z e D, provided
3D = {z: p{z) = 1}, and provided dp/dv ^ c > 0 on 3D, where 3/3v is
the derivative with respect to the outward normal. E. L. Stout [5]
proved that DeSn is strictly convex and that if OeD, then D can
be defined by a globally defined function which has positive definite
real Hessian on Cn — {0}. From now on, when we consider D e Snf

we assume that the defining function of D is globally defined and
we take this function as a characterizing function of D. By E. M.
Stein [3], the following (1) and (2) are equivalent for holomorphic
f untions f in D and 1 ̂  p ^ oo

(1) 8up(( l
ε<l \JdDε

where Dε = {x: p(x) < ε}, ρ(x) a characterizing function of D, and
dSε is the element of surface area on 3Dε.

(2) \f(x)\p has a harmonic majorant if p < oo. When p = oo
we assume that ] / | is bounded in D.

By the Cauchy-Fantappie integral formula, if / e HP(D), 1 ^ p <:
oo, then for w e D,

f(w)=cn\ f(z)

ddz,A---A dznΣ(-l)*e*(3¥ei(2) Λ Λ dξh{z) Λ Adξn(z)Σ
X (w - z,

where

and ^- means to be omitted. Since dD is of class C2, the above
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integral can be written as

k(z)dS(z)
ϋ-z, Vp{z)Y

where k is a continuous function and dS is the element of surface
area on 3D. Next we have the following propositions proved by
E. L. Stout [6] for the Ramίrez-Henkin integral. The proofs of the
propositions are essentially the same as the proof of Theorem II.1
in E. L. Stout [6], so we omit the proofs.

PROPOSITION 1. If f e HP(D), 1 <; p <> <*>, and if φ is defined and
satisfies a Lipschitz condition on Cn, then the function fΦ defined by

f(z)φ(z)k(z)dS(z)
1 \W •— Z,

belongs to HP(D).

PROPOSITION 2. Let D e Sn. Let f = u + ive O(D), where 0{D)
is the space of all holomorphic functions in D. Let \ u \p, 1 < p ^ oo9

have a harmonic majorant, and let φ be a real function of Cn which
satisfies a Lipschitz condition on Cn. Let fΦ be the function defined
in Proposition 1. Then \Refφ\

p has a harmonic majorant in D.

3* Proof of theorem* Let D 6 Sn. Let M = max {x2n: for some
ze D, z ~ (zlf , zn), x2n = Im zn}9 and let m be the corresponding
minimum. Let ε0 satisfy 0 < ε0 < (1/12)(ΛΓ — m). Let ηi9 i = 1,2, be
real valued functions of a real variable such that

(1) 7]i is of class C2, i = 1, 2 ,

( 2 ) ηΛt) = 0 if t ^ — (M + m) + — ε0 ,
2 2

Ύ)lt) = 0 if t ^ — (M + m) - — ε0 ,

( 3 ) ^(ί) ̂ 2 if t^ —{M + m) + 3ε0 ,
2

V2(t) ^ 2 if t ^ —{M + m) - 3ε0 ,2

( 4 ) η[\t) > 0 if t > —(M + m) + —ε0 ,
2 2

^'(ί) > 0 if t < —{M + m) - - |ε 0 .



300 KENZO ADACHI

Let p be a characterizing function of D, and let

A = {z: P(z) + ftOO < 1}, A = {̂ : P(s) + %GO < 1} .

Then it is easily verified that D19 A and A Π A are elements of Sn.

LEMMA 2. Lei A A> A frβ as above. If a positive subharmonic
function φ in D has harmonic majorants in A and D2, then φ has
a harmonic majorant in D.

Proof. To prove Lemma 2, it suffices to show that

sup I φdS£ < co .
ε<l }dDε

Let Du = {p{z) + η^xj < s}, A, = {(*.z) + %(*„) < s}. Then A. U A. =
A, 3Aε U 3AS => δA, A, c: A, A, c A Hence we have

dDε

^ ( φdSl + \ φdS2

ε

where dSl and dS; are the surface area elements of dDlε and dD2ε,
respectively. Integrals on the right are bounded uniformly on ε.
Therefore Lemma 2 is proved.

We need two definitions.

DEFINITION 1. We say that a positive subharmonic function φ
in D has local harmonic majorants if there exists an open covering
{Oa}aεi of D such that for each ae I, φ has a harmonic majorant on
OaΓ) D.

DEFINITION 2. We say that F is locally in NP(D) if there exists
an open covering {Va}aeI of D such that for each a el, F restricted
to Va (Ί D belongs to Np(Va{\D). The class of functions locally in
NP(D) will be denoted by Nfoc(D). We denote the group of its
invertible elements by inv N[0C(D).

LEMMA 3. Let D, DL and A be as in Lemma 2. Let f — u +
iveO(D1

<Γ\ A) If \w\p has a harmonic majorant in A fl fl2> then
there exist functions fλ and f2 such that / = Λ + f29 where fi} i = 1, 2,
is holomorphic in A and \R&fi\p has a harmonic majorant in Dίy

respectively.

Proof. Let ψ be a function on Cn which satisfies a Lipschitz
condition and which has the properties that
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f = 0 on ί ϋ e 3 ( A n D2): x2n <±-(M + m) - εol ,

α/r = 1 on |S 6 d(A Π A): »2» > —CM" + ™0 + So| ,

where ε0 is the constant used in Lemma 2. Let p be a characterizing
function of A Π A Write / as a Cauchy-Fantappie integral. For
w e A ί l A> w e have

where

- jr(z))k(z)dS(z)

(w — 2, Vp(z)Y

The functions /x and /2 are holomorphic on A Π A and that I/J* and
|/ 2 |p have harmonic majorants on A Π A Moreover, we can write

x2n ^

(w-z,Vρ{z)Y

where Γ = 3(A Π A) Π {cc2% ^ (Λf + m)/2 + ε0}. If ί; = {2; e D: x2

(Λf + m)/2 + 2ε0}, then the distance between J57 and the tangent plane
of 3(A Π A) at 3 is positive, where z is contained in 3(A ΓΊ A) Π
{x2n ^ (Λf + m)/2 + ε0}. Therefore f1 is holomorphic in A Let ft.
be a characterizing function of A Then we have

+

where dSε is the element of surface area of d(A Π D2)e. Integrals
on the right are bounded uniformly on ε. Therefore \f^\p has a
harmonic majorant in A Hence IRe/J** has a harmonic majorant
in A The proof that |Re/ 2 | p has a harmonic majorant is the same
as the proof for fl9 Therefore Lemma 3 is proved.

LEMMA 4. Let D e Sn. Then any positive subharmonic function
φ in D with local harmonic majorant has a harmonic majorant.
A one variable version of this result has been given by P. M. Gauthier
and W. Hengartner [1].

Proof. Suppose φ does not have a harmonic majorant in D. Let
A and A be subdomains of D constructed in Lemma 2. By Lemma
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2, φ cannot have harmonic majorants on both A and D2. Say A
The x2ίΓwidth of Dly i.e., the number max \x'2n ~ x"n\, the maximum
taken over all pairs of points z\ z" in Dί9 is not more than three
fourths of the x2n-width of D. We now treat A as we treated D, using
the coordinate x2n-i rather than x2n, and we find a smaller set Dn c A
on which the problem is not solvable and which has the property that
the x^-i-width of Dn is not more than three fourths that of DL. We
iterate this process, running cyclically through the real coordinate of
Cn, and we obtain a shrinking sequence of sets on which our problem
is not solvable. But there is an open covering {Oa} of D such that
on each Oa Π D, φ has a harmonic majorant. One of the domains on
which φ has no harmonic majorant will fall inside some Oa (Ί D, which
is a contradiction. Therefore Lemma 4 is proved.

By using Lemmas 2, 3, 4, we are going to prove our theorem.

Proof of theorem. Suppose theorem does not hold. Let Dι and
A be subdomains of D constructed in Lemma 2. If there were
functions Ft e i\^(A) such that for every a e I and ί = 1, 2, FJ*1

belongs to inv JV*(A n Va). Then F.F,1 = FJ2-faF2

ι would be
inv JVP(A n A Γl Va) for every a. Thus, ί7!^1 would be in

inv JVfoc(A Π A) = inv ΛΓP(A Π A)

By Lemma 4, if we set F = F,F2\ then (log+l^l)2' and
have harmonic majorants in A Π A So if F = ef, then | R e / | p =
(log+ |F| + log~\F\)p. Therefore \Ref\p has a harmonic majorant.
From Lemma 3, we can write / = fλ + /2, where ft e O(Dt), i = 1,2,
and IRe/ίl2' has a harmonic majorant in Dx, respectively. If we set
(?i-exp(/x), G2 = exp(-/8), then (log+ |G,|r, (log-IGiD^IRe/J', i = l, 2,
respectively. Therefore G<, ί = l, 2, is an invertible element of Np(Di),
respectively. Moreover, FyFϊι= exp (/J exp (/2)= exp (/) = G1G2"

1. If
we define F = ^ G r 1 on A and F - F ^ 1 on D2, then FeNp(D) and
for each α e J , F/" 1 e inviVfoc (Va Π 2?). But this is impossible since
we have assumed our theorem not to be true. So we can assume
that our problem is not solvable on A We iterate the same process
as in the proof of Lemma 4, and we have a contradiction. Therefore
theorem is proved.
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