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Let a Polish group G act continuously on a Polish space
X, inducing an equivalence relation E. Let Ey be the re-
striction of E to an invariant Borel subset Y of X. As-
sume Eγ is countably separated. Then it has a Borel trans-
versal.

Throughout, let Γ be a continuous action of a Polish group G on
a Polish space X. Thus X is a separable space admitting a complete
metric, while G is a topological group whose topology is separable
and admits a complete metric, and Γ is a continuous function
GxX-> X satisfying Γ{g~\ Γ(g, x)) = x and Γ(g, Γ(h, x)) = Γ(gh, x)
for all xeX and g,heG. We write gx for Γ(g, x), and for subsets
of X write gA for {gx: x e A}. Γ induces an equivalence relation
E on X: xEy iff gx — y for some g e G. W c X is invariant if
#TF = TΓ for all #e(x. Let Γ c l be an invariant Borel set, Eγ the
restriction of E to Y. A transversal or selector-set for an equi-
valence relation is a set composed of exactly one representative
from each equivalence class. Let us assume Eγ is countably
separated, i.e., that there exist invariant Borel ZQ, Zly Z29 c Y
such that for all x, y e Y:

(0) xEy < > Vm(x e Zm < > y e ZJ

our goal is to prove the following selection result:

THEOREM. Under the above hypotheses, Eγ has a Borel trans-
versal. It should be mentioned that a number of special cases and
overlapping results have been known to and applied by C*-algebra-
ists for some time now. The construction of the required trans-
versal proceeds in four stages.

Stage A. It will prove convenient to reserve the letters m, n
plain and with subscripts to range over the set I of natural numbers,
and to reserve s, t plain and with subscripts to range over the set
Q of finite sequences of natural numbers. We let s*m denote the
concatenation of s and m, i.e., s with m tacked on at the end. We
wish to define Borel sets A(s) for overy s e Q of even length.

Case 1. s = the empty sequence 0 . Set A(0) = Y.

Case 2. s = a sequence (m, n) of length two. Set A((m, n)) = Zm
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if n = 0, and Y - Zm if n > 0.

3. s = a sequence of form t*m*n, where t has length ;> 2,
and A(ί) is a closed set. For such t we wish to define A{t*m*n)
for all m and n at once. In order to do so, we first fix a complete
metric p compatible with the topology of X. For each m we then
let {A(t*m*n): nel} be a family of closed sets of ^-diameter < 1/m
whose union is A(t).

Note that in every case so far we have:

(1) A(t) = ΓMJnA(t*m*n).

Case 4. s — a sequence of form t*m*n, where t has length ^ 2,
and A(t) is not closed. Again, for such t we define all A(t*m*ri) at
once.

But first we introduce by induction on countable ordinals a a
slight modification of the usual hierarchies of Borel sets. Let Θo be
the family of all closed subsets of X. For a countable ordinal
a > 0, let Θa be the family of all sets of form ΓLU Wmn with the
Wmn 6 \Jβ<aΘβ. Thus Θί = Fσδ, Θ2 = Fσ δ σ δ. For present purposes the

of a Borel set T^ will mean the least a with WeΘa.
Now returning to our Borel set A{t) of rank a > 0, we let the

*m*w) be sets of rank < a satisfying (1) above. This completes
the opening stage of the construction.

Stage B. Let us fix an enumeration s0, slf s2, of the nonempty
members of Q, such that if sm is an initial segment of sn, then
m <n. Let Fn denote the set of all functions {sQ, , sΛ_J -> J. (So
JP0 contains only the empty function 0.) Let F — \JnFn, and let F^
be the set of all functions {s*: iel}—>I. We reserve the letters
(j, τ plain and with subscripts to range over F. We say τ is an
immediate proper extension of σ, and write σ c τa9 if for some n,
σ e Fny τ e Fn+l9 and τ extends σ.

For ψeFuF^ and s = (m0, mx, , m ^ J 6 dom ψ we define:
ψ+(s) = (m0, w0, m^i , , mfc.!, w ^ ) , where
n0 = ψ((m0)) and ^ - ^((m0, mj), , ^fc_x = φ(s) .

To complete stage B of the construction, we define B(σ) to be the
intersection of all A(σ+(s)) for s e dom σ. Unpacking all these de-
finitions, one readily verifies that :

( 2 ) *(*) = U c r - B ( r ) .

Another glance at the definitions (especially stage A, case 2) dis-
closes:

( 3 ) x 6 B(σ) & (m) e dom σ > (a; e Zm < > σ((m)) = 0) .
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Stage C. Before launching into the next stage of the construc-
tion, we define for any WaX the Vaught transform W* of W to
be {xeX: {geG: gxe W) is nonmeanger (2nd category) in G). One
readily verifies that:

W* is invariant.
W is invariant —» W = W*.

It is shown in [1] that

W is Borel • W* is Borel

which will be all-important for us.
Now let us define C(σ) = J5(σ)#. The above facts from Vaught's

theory of group actions imply that each C(σ) is an invariant Borel
set, that C(0) = Y, and that:

(4) C(σ) = \JσCrC(τ).

Now if xeC(σ), then some gxeB(σ), so applying (3) above, and
recalling that the Zm are invariant, we conclude:

( 5 ) x e C{σ) & (m) e dom σ > (x e Zm « > σ((m)) = 0) .

Stage D. We say σ lexicographically precedes τ, and write
σ<\τ, if for some n and i < n we have σ e Fn, τ e Fn, σ(Sj) = r(sy)
for all j < i, and σ(st) < τ(st). The relation <\ well orders each 2^.

Let D(σ) be the invariant Borel set C(σ) U{C(τ): τ < α1}. Thus
D(0) = Y and by (4) and (5) we have:

(6) D(σ) = ΣiocrD(τ)

( 7 ) a; 6 D(6r) and (m) e dom ί7 > (a? e ^ m < • σ((m)) = 0) .

In (6), Σ denotes disjoint union.
Finally we are in a position to introduce the Borel set:

T = ΠnUoeFn(B(σ) n D(σ)) .

We aim to show that T is the required transversal for Eγ. To this
end we consider an arbitrary .^-equivalence class Ka Y and verify
that T Π K is a singleton.

To begin with, from (6) it is evident that there exists a
sequence 0 = σ0 c σι c σ2 c of elements of F such that K e Z>(σ J
for each n, but iΓ Π D(σ) = 0 for any other σ e ί7. Let ψeF^ be
the union of these σn.

Recall that:

B(σn) = n (AKW): i < n) =
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Let us consider the closely related sets:

Ln = Π{^(Ψ+(si)) i < n a n d A(ψ+(Si)) is a closed set} .

Manifestly the Ln are closed and nested, Ln+ι c Ln. They are also
nonempty. (To see this, note that K c D(σn) aC(σn) implies K Π
B(σn) Φ 0 , and that LnZDB(σn).) Finally, the ^-diameters of the Ln

converge to zero. (To see this, consider for any given m the sets
A(ψ+((m))), A(ψ+((m, m))), A(ψ+((m, m, m))), . By stage A, case 4
of our construction, the ranks of these sets decrease until at some
step we reach a closed set; then by stage A, case 3, at the very
next step we get a closed set of ^-diameter < 1/m.) Since p is com-
plete, f\nLn is a singleton {y}.

Claim, y e A(ψ+(s)) for all s.
This is established by induction on the rank of the set involved:

we know it already for rank 0, i.e., closed, sets. Suppose then
A(ψ+(s)) has rank a > 0, and assume as induction hypothesis that
the claim holds for sets of rank < α, e.g., for the various
A(ψ+(s)*m*ri). Then for any m, letting n = ψ(s*m), we have
ψ+(s*m) — α/r+(s)*m* ,̂ and so by induction hypothesis, y e A(ψ+(s)*m*n).
This shows y e Γ\m\JnA(ψ+(s)*m*n) = A(ψ+(s)) as required to prove
the claim.

From the claim it is immediate that y e f\nB(σn), and also that
for any m, y e Zm iff ψ(m) = 0. On the other hand, by (7) above,
for any m, Ka Zm iff ψ(m) = 0. But then by (0), y eK. And this
implies y eΓ)nD(σn). Putting everything together, T Π K = {y} as
required.
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