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Suppose A is a bounded operator on the Banach space
& such that A or A* is one-to-one. In this note, we point
out a relation between the commutant of A, the commutants
of its powers, and operators which intertwine A and λA,
where λ is a root of unity. A consequence of this relation
is that the commutants of A and An are different if and
only if there is an operator Y, not zero, that satisfies A Y—
λYA, where λn=l, λΦl. Combining this with Rosenblum's
theorem, we see that if the spectra of A and XA are dis-
joint, the commutant of A is the same as that of A2. We
also use the theorem to give a counterexample to a conjec-
ture of Deddens concerning intertwining analytic Toeplitz
operators.

If A, B, and X are bounded operators on &, we say X com-
mutes with A if XA = AX, and we say X intertwines A and B if
XA — BX. The set of operators that commute with A, the commu-
tant^of A, will be denoted {A}'.

LEMMA. Suppose A is an operator such that A or A* is one-
to-one, and X is a primitive nth root of 1. If X commutes with An,
the operators Y, = Σ!s=i XijAn~j~lXAj, for i = 0, 1, , n - 1, are the
unique operators such that AYt— Y^A) and nAn~xX — X ^ 1 γt.

Proof. Let Γ, - Σ?=ί
Then

- XAn

= Σλ"*+1)4"-*-1.XA*+1

fe=O

tA) = Yt(X*A) .

Since Σ?=o λ ί i = 0 when j Φ 0, and the sum is n when i = 0,

Σ Yi = ΣΣ
ϊ=0 i=0 i=0

ΣA -^IA'Σλ
j=0 ΐ=0
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Now suppose Z09 Zlf , Zn_λ are operators such that nAn~1X =
Σ S Z, and AZ, = Z^X'A) for each ί. We have

j=0

Σ Σ ^ ΣΣ
J=0 \fc=0 / 3-0 k=0

k=0 3=0

If A is one-to-one, then An^Yt = A%~% implies F, = Z<. If A* is
one-to-one, then An~ι has dense range and YiAn~ι — X~ί[n~1)An~ιYi —

x-i(n-DAn-iZi = z,An~\ which implies Yt = Z,.

THEOREM. Suppose A or A* is one-to-one and n is a positive
integer. Then {AY = {A%}' i/ and only if AY = Γ(λA) /or λ% = 1
implies λ = 1 or F = 0.

Proof. (=>) Suppose {A}' = {Aπ}' and for some Y" we have A F=
Γ(λA) where λ% - 1. Then AnY = Y(XnAn)=YAn, so Ye{An}'={A}'
and A Γ - YA as well. Thus XYA = A Γ = FA and (1 - λ)FA = 0.
Since A or A* is one-to-one, this means that (1 — λ)F — 0, so λ = 1
or F = 0.

(<=) Suppose A 7 = F(λA) for λ% = 1 implies Y=0 or λ = 1.
Let X be in {A%}', and let X be a primitive nth root of 1. For
i = 1, 2, , n - 1 let F, = Σ?=o WA'-^XA*. By the lemma, AF, =
Fίίλ*^) so, since λ* Φ 1, our hypothesis says Yt = 0. Thus, we have
the n - 1 equations Σ?=ί λ^AΛ"i""1XAi = 0, (ΐ = 1, 2, ••-, w — 1).

Consider the equations Σi=oι λ '̂̂ y = 0, [i = 1, 2, , n — 1), in
the indeterminates w09 w19 w2, , wn^. We notice that wo = w1 = w2 =
...= wn_x is a solution of these equations, and since the (n — l)xn
coefficient matrix (Xji)]=o 7=ί: bas rank n — 1, this is the only solution.
In our case, we conclude An'ιX = An~2XA = . . . = XA*"1. If A is
one-to-one, A ^ X = A%~2XA implies AX = XA, whereas if A* is
one-to-one, AXAn~2 = XA91"1 implies AX = XA.

We have shown that X is in {A}' if it is in {An}'. Since the
reverse inclusion is automatic, we have [An}r = {A}'.

As illustrations, we prove the following corollaries.

COROLLARY 1. // the spectrum of A and the spectrum of —A
are disjoint, then {AY = {A2}'.

Proof. Since the spectra of A and —A are disjoint, Rosenblum's
theorem, [3], implies that the only solution of AX=X( — A) is X —
0. Zero is not in the spectrum of A, so A is one-to-one and we
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apply the theorem to conclude {A}' = {A2}'.

COROLLARY 2. If the spectrum of A is contained in the quarter
plane {z | Re (z) > 0 and Im (z) > 0}, then {AY = {A4}'.

Proof. The spectra of A, ίA, ί2A, and %ZA are disjoint, so by
Rosenblum's theorem, the only solution of AX — X(ikA), for k = 1,
2, or 3, is X = 0. Zero is not in the spectrum of A, so A is one-
to-one, and we apply the theorem to conclude that {A}' = {A4}'.

The theorem may also be used to refute a conjecture of Deddens
concerning intertwining analytic Toeplitz operators [2, page 244]*
We recall that if φ is a bounded analytic function on the unit disk
D, the analytic Toeplitz operator, Tφ, is the operator on the Hardy
space H2 of multiplication by <f>. Deddens conjectured that when φ
and ψ are bounded analytic functions on D and 0 is the only solu-
tion of XTΦ = TψX, then the complex conjugate of the range of ψ
is not contained in the point spectrum of T*. To see that this is
false, let / be a Riemann map of D onto the slit disk D\( — 1, 0].
Then the corollary of Theorem 5 of [1] implies that {(Tf2)Ύ = {Tfγ =
{Tfi}'. If p and —f2 are the φ and ψ of the conjecture, we note
that range ψ = D\{0} = point spectrum Tf. But since {(Γ/2)

2}' =
{TfzY and Tf2 is one-to-one, the theorem implies that 0 is the only
operator which intertwines Tf2 and — Tf* — JΓ_/2. The difficulty
seems to be associated with the fact that the multiplicities of f2

and — f2 are different on the real axis.
The unfortunate presence of An~ι in the formula nAn~ιX= Σ ^ 1 Yi

of the lemma is essential when A is not invertible; it is easy to
give examples of operators X in {Γz

2}' so that 2TZX = Yo + Y19 as
above, but Yo Φ TZB for any bounded operator B. On the other
hand, if A is invertible, we may solve the equation for X and
obtain X = Σιt=o Ϋi9 where Ϋt = (wA*"1)"1!^. These operators are
the unique operators that satisfy AΫt = ΫtQJA) and X = Σ S 1 Ϋt.

In the above, we have found a relation between the commutants
of A and p(A) for the polynomials p(z) = zn. Of course, there is an
analogous result for polynomials of the form p{z) = (z — a)n + β.
It would be interesting (and apparently more difficult) to obtain
information about the relation between {A}' and {p{A)Y for more
complicated polynomials.
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