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It is shown that every finite partial idempotent c£-quasi-
group is embedded in a finite idempotent cZ-quasigroup.

1* Introduction* Evans [3] has proved that every partial Latin
square of order n can be embedded in a Latin square of order 2n.
Equivalently, every partial quasigroups of order n can be embedded
in a quasigroup of order 2n. The connection between Latin squares
and quasigroups is explained in [2]. Lindner [5] has proved that
every idempotent partial quasigroup of order n can be embedded in
an idempotent quasigroup of order 2n, while Hilton [4], using a
different technique, reduced this order to An. After Cruse [1] gave
a multidimensional analogue of Evans' theorem, Lindner [6] succeeded
in proving an embedding theorem for idempotent ternary quasigroups.
In the present paper, denoting by N(p) the minimal order of d-
quasigroups in which the partial idempotent d-quasigroup (P, p) is
embedded, we show that (P, p) is embedded in an idempotent d-
quasigroup (Q, q), such that \Q\ ̂  2N(p) if d is odd and \Q\ ^ 3N(p)
if d is even.

For d — 3 this is an improvement on Lindner's result, but when
d = 2 our construction gives a higher upper bound than Hilton's.
The reason for this is that Hilton's construction relies on the fact
that a partial quasigroup can be embedded in a quasigroup with the
order doubled. This is not known to be true when d > 2 and a
direct generalization of Hilton's construction cannot be applied.

2* Notation and definitions. If A is a set and xeAd, then
xt denotes the ith component of x == (xu x2, •••, xd). If xeA, xeAd

is defined as x = (xf x, , x). Similar notation applies to the func-
t i o n s f:X->Yd a n d g:X-*Y. F o r e v e r y xeX

and for every xeXd, g(x) — {g{x^f g{x^), •••, g(Xd)) The function ΔA\

A-*Ad is defined as AA(x) = x for all xeA. The restriction of
/: S —> T to A £ S is denoted by /1 A. We may take exception when
/ is a d-ary operation, in which case / 1 A will often be abbreviated
by /. When no danger of ambiguity exists, we do not distinguish
between h: S —> T and g:S-*U if h(x) — g(x) for every xeS. The
symbol [x, y] denotes the d-tuple
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(O&i, Vi), fe, 2/2), •••, (Xd9 Vd)) f

XU stands for {[x, y\\y e 17} and Sx denotes the Cartesian product
{x} x S.

If Q is a nonempty finite set of cardinality n and d is a natural
number, we say that q:U—>Q is a partial d-quasigroup of order
n, provided U Q Qd and the equation q{x) — q(y) implies that either
x = y or else x and y differ in at least two of their components.
The partial ώ-quasigroup q may also be denoted by (Q, q) or (Q, U, q).
If U — Qd, then q is a d-quasigroup of order n.

We observe that if (Q, g) is a finite ώ-quasigroup, then given
x19 x2, ", %i-ι, %i+ι, *- ,xA and y in Q, there exists a unique x, e Q
such that

q(xίf xz, - *,xd) = y .

A partial d-quasigroup (Q, ?7, g) is idempotent it xeQ implies
α? e U and g(») = cc.

In order to simplify our terminology we refer to ordinary finite
quasigroups by calling them binary quasigroups and use the word
"quasigroup" to abbreviate the expression "finite c?-quasigroup".

(S, T, s) is a partial subquasigroup of the partial quasigroup
(P, U, q), if S C Q and s = q\T. A partial quasigroup (S, T, s) is
isomorphic to (Q, U, q), if there exists a bijection φ: S —> Q such that
φ(T) =U and g#(z)) = ^(β(a )) for all x e Γ. (S, Γ, s) is embedded
("can be embedded") in (Q, [7, g) if there exists an injection φ: S -^Q
such that φ(T)QU and g(^(a?)) = φ(s(x)) for all x e Γ . Evidently,
(S, T, s) is embedded in (Q, ?7, g) if and only if the latter has a
partial subquasigroup isomorphic to the former.

A function t: Q —> Qd is a transversal of the quasigroup (Q, g) if
( i ) q(t(x)) = » for all x e Q
(ii) ci? ̂  y implies tt(x) Φ t^y) for i = 1, 2, , d. We observe

that if (Q, g) is idempotent, then Δq is a transversal of (Q, g). Some
quasigroups do not possess transversals. A transversal t of (Q, g)
is an offbeat transversal if t{x) Φ y for all x, y eQ. We say that
f:Q~^Qd fixes P if P Q Q and /(a?) - x for all a? e P.

3* Transversals and embedding*

LEMMA 1. Let n ^ 2. TAew /or e^er̂ / odd d ^ 3 έfeere
cm idempotent d-quasigroup (Q, g) 0/ order n possessing an offbeat
transversal.

Proof. Let Q - {0, 1, . , n - 1}, let
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and let

( d l ) 2

q(x) = x1 + Σ (x2i — xii+1) (mod n)

t(x) = (a?, a; + 1, x + 1, •••,# + ! ) ( m o d w) .

Then (Q, q) is an idempotent quasigroup with t as an offbeat trans-
versal.

LEMMA 2. Let n^Z. Then for every d ^ 2 £/&ere exists an
idempotent d-quasigroup of order n with an offbeat transversal.

Proof. We may assume that d is even as Lemma 1 covers the
case when d is odd. We first deal with the case when d = 2. Figure
1 shows an idempotent binary quasigroup of order 6 with an offbeat
transversal τ.

τ(0) = (1, 4)

τ(l) = (0, 2)

τ(2) - (3, 5)

r(3) = (2, 0)

τ(4) = (5, 3)

τ(5) = (4, 1)
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FIGURE 1

For all other orders n ^ 3 the desired binary quasigroups can be
constructed with the help of orthogonnl Latin squares. Now let
d ^ 4, d even and n ^ 3. Let Q = {0, 1, , n - 1} and let (Q, Z)
be an idempotent binary quasigroup (of order n) with an offbeat
transversal τ. Let

= Zfo, x2)
d/2

(mod

and let

= (τ^x), τz(x), x, x,

Then (Q, qr) is an idempotent cί-quasigroup with t as an offbeat trans-
versal.

LEMMA 3. Let (Q, q) be a d-quasiguoup with a transversal t
and let
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qt(x) = qfofa), t2(x2), , td(xd)) .

Then (Q, qt) is an idempotent quasίgroup.

Proof. It is clear that qt maps Qd into Q. Suppose that x Φ y
and <fc(ίc) = (fid/). Let i be such that ^ Φ yt. Then *,(#<) =£ tt(yt).
Since

?(ίi(a?i), ^ 2 ) , , td(xd)) = ?&(!/,), t s (# 2 ), , ίdCi/d)), (ίi(a?,), ^(#2), ,

*d(̂ d)) a n ( i (*i(l/i)> ̂ 2(̂ /2), , td(yd)) must differ in at least two com-
ponents. Hence there exists a j Φ i such that tό{xό) Φ tό{yά) implying
Xj Φ yό. Thus x and y differ in at least two components and (Q, qt)
is a quasigroup. If 3 6 Q, then

and (Q, qt) is idempotent.

LEMMA 4. Let (P, p) 6e α-̂  idempotent partial subquasigroup
of a (not necessarily idempotent) d-quasigroup (Q, q) and let t be a
transversal of (Q, q) fixing P. Then (P, p) is a partial subquasigroup
of (Q, qt).

Proof. It suffices to show that q and qt agree on Pd. Let x e Pd.
Then indeed

qt{x) - qfoiXy), t2(x2), , td(ajd)) = q(xlf x2, , x j = q(x) .

DEFINITION. The product (Q, g) of the d-quasigroups (JB, r) and
(S, s) is defined as follows. Q = R x S and for every

z = [a?, y] e CR x S)d

), s(y)) .

If ί' and t" are transversals in (jβ, r) and (S, s) respectively, their
product ί is defined by

t(x, y) - [t'(x), t"{y)} .

LEMMA 5. The product (Q, 9) 0/ the quasigroups {R, r) and (S, s)
is a quasigroup. It f and t" are transversal of (R, r) and (S, s)
respectively, then their product t is a transversal of (Q, q). If (V, r)
is a subquasigroup of (R, r), then q\(V x S)d is a subquasigroup of
(Q, q). If (R, r) is idempotent and xeR, then (Sx, q) is isomorphic
to (S, s). The product of idempotent quasigroups is idempotent.

Proof, Let (Q, q) be the product of (R, r) and (S, s). Suppose
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Q([%9 v]) = Q(lu> V]) a n d [χ> v] ^ ίu> v]- Then r(x) — r(u) and s(y) =

s(v). If x Φ u, then x and u differ in at least two components and
so do [x, y] and [u, v], lί x = u, then y Φ v and again [x, y] and
[u, v] differ in at least two components. Thus (Q, q) is a quasigroup.
Suppose t' and ί" are transversals of (12, r) and (S, β) respectively
and £ is their product. Then

Q(t(x, y)) = «[«'(«), t"(»)] = (r(t'(a?)), s(t"(y))) = (x, y) .

Suppose (x, y) Φ (u, v). If x Φ u, then t't(x) Φ t't(u) for i = 1, 2, , <Z;
and if y ^ v, then ί"(y) ^ ίί'(v). In any event, if (x, y) Φ (u, v), we
have

Ux, y) = («(«), tϊ(y)) Φ (fi't(u), tϊ(y)) = Uu, v)

for all i. Thus ί is a transversal of (Q, ί ) . Suppose (F, r) is a
subquasigroup of (12, r) . Then the range of q\(V x S)d is F x S, so
q\(V x S)rf is a subquasigroup of (Q, q). If (12, r) is idempotent, then
y f-* (a?, y) is an isomorphism from (S, β) to (Sa, g) for every x e R.
If (R, r) and (S, s) are both idempotent and z = (x, y)eQ, then

), s(y)) = (a?, y) =

and (Q, g) is idempotent.

LEMMA 6. Let (12, r) α^d (S, gr) 6β idempotent quasigroups and
let (Q, f) be their product. Let PQS and let τ be an offbeat trans-
versal of (12, r) . For every z = (cc, y) eQ let

'ί(», ») if yeP
i[Z)~ \(τt(x),y) if y£P

for i = 1, 2, , d. Then t is a transversal of (Q, / ) , fixing R x P.
Furthermore, if (x, y)eQ and a e 12, then t(x, y) e Sd

a if and only if
x = a and y e P.

Proof. Let (cc, y) eQ and (w, v ) e Q be such that tt(x, y) = t^u, v)
for some i. Then necessarily y — v. If y e P, then

(a?, y) = ί/a?, i/) = ί4(w, v) = ^(u, i/) = (u, y) = (%, v) .

If y ί P, then (τt(x), y) = (τt(u), v) implies (xf y) = (%, v). lίyeP,
then

If y e P, then

= (a?,



356 J. CSIMA

Thus t is a transversal of (Q, / ) . It is evident from the definition
of t, that t fixes R x P. lί aeR and y eP, then of course ί(α, ?/) e
Sf. On the other hand if (x, y)eQ,aeR and 2/£P, then t(a?) £Si
because τ(x) = α is impossible as τ is an offbeat transversal.

LEMMA 7. Let (Q, r) δe α quasigroup with a subquasigroup (S, r)
emώ Zβί (S, s) 6β αw arbitrary quasigroup (on the set S). For each
xeQd let

= («(&) i/ xeSd

Q[X) ~ \φ) if x$Sd'

Then (Q, q) is a quasigroup.

Proof. Let x e Qd and y e Qd such that x Φ y and q(x) — q(y).
If both x and y belong to Sd, then s(x) — s(y) implies that x and y
differ in at least two components- The same is true if neither x
nor y belong to Sd. If, say xeSd and y ί Sd, assume that x and y
differ in exactly one component, say their first. Then x1 Φ y1 and
xt = yή if i ^ 2. It follows then, that y1 ί S. Let x[ e S be such that

r(αί, x2, , »d) = s(xlf x2, , a?d) .

Then X[Φ yt. On the other hand,

r(x[, x2, , xd) = s(x) = r(y) = r(^, a?2, , α?d) ,

implying x[ = ylf a contradiction. Thus (Q, q) is a quasigroup.

DEFINITION. If (Q, r), (S, r), (S, s) and (Q, g) are as in Lemma 7,
then (Q, q) is called the replacement of (S, r) by (S, s) in (Q, r).

THEOREM 1. Lei (P, ?7, p) be a partial idempotent sub-d-quasi-
group of a d-quasigroup (S, s). Then (P, U, p) can be embedded in
an idempotent d-quasigroup (Q, q) such that \ Q \ <5 31S \ if d is even
and \Q\ £2\S\ if d is odd.

Proof. Let (P, Z7, p) be a partial idempotent subquasigroup of
(S, s). First we deal with the case when \S\ ̂ 3 . Let g be such
that (S, g) is an idempotent quasigroup and let {R, r) be an idempotent
quasigroup with an offbeat transversal τ. Let (Q, /) be the product
of (R, r) and (Sf g). Define t as in Lemma 6. Then t is a transversal
of (Q, / ) . Let aeR. Then t fixes Pa(QR x P). Define s':Sd

a->Sa

as follows: s'([a, z\) = (α, s(«)) for all 3 e Srf. Then (S> s) is isomorphic
to (Sβ,s0 via ̂ (y) = (α, 1/) for all ̂ /eS. Indeed, ψ(Sd) = Sf and s'(^(z)) =
s'([α, »]) = (α, s(«)) = ̂ (8(»)) for all « 6 Sd. Let (Q, gr) be the replace-
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ment of (Sβ, /) by (Sa, s') in (Q, / ) . Then φ\P establishes an iso-
morphism from (P, U, p) to (Pa,aU,q). Thus (P, Z7, p) is embedded
in (Q, g). Next we will show, that ί is a transversal of (Q, q). It
suffices to verify that q(t(x, y)) = (x, y) for every (sc, y) e Q. Suppose
(x, y) e Q. If ί(a?, y) ί Sd

a, then ?(t(α, y)) = f(t(x, y)) = (a?, y). If t(a, y) e
Si, we must have x — a and ?/ e P by Lemma 6. But then

q(t(x, y)) = q(t(a, y)) = q([a, y\) = s'([a, y]) = (α, s(y))

= (P>> P(y)) = (a> V) = (»ι 2/)

Thus ί is a transversal of (Q, g). By Lemma 4 (P, Z7, p) is embedded
in the idempotent (Q, qt). Clearly, \Q\ = \R\ \S\ and the smallest
idempotent quasigroup (R, r) with an offbeat transversal is of order
3 or 2, depending on the parity of d.

Now let us look at the case when the order of (S, s) is one
or two. Then, if P = S, (P, U, p) is embedded in the idempotent
(S, s). If P Φ S, then (P, U, p) is the unique (idempotent) quasigroup
or order one, embedded in itself.

THEOREM 2. Let (P, p) be a finite partial idempotent d-quasigroup.
Then (P, p) can be embedded in a finite idempotent d-quasigroup
(Q, q). Furthermore, if N(p) denotes the minimal order of d-quasi-
groups into which (P, p) can be embedded, then Q can be chosen so
that IQI <̂  2N(p) if d is odd and \ Q | ^ ZN(p) if d is even.

Proof. Using Cruse's result [1] that every finite partial d-quasi-
group is embedded in a finite eZ-quasigroup, our theorem immediately
follows from Theorem 1.
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