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EMBEDDING PARTIAL IDEMPOTENT
d-ARY QUASIGROUPS

J. Csima

It is shown that every finite partial idempotent d-quasi-
group is embedded in a finite idempotent d-quasigroup.

1. Introduction. Evans [3] has proved that every partial Latin
square of order » can be embedded in a Latin square of order 2mn.
Equivalently, every partial quasigroups of order » can be embedded
in a quasigroup of order 2n. The connection between Latin squares
and quasigroups is explained in [2]. Lindner [5] has proved that
every idempotent partial quasigroup of order n can be embedded in
an idempotent quasigroup of order 2", while Hilton [4], using a
different technique, reduced this order to 4n. After Cruse [1] gave
a multidimensional analogue of Evans’ theorem, Lindner [6] succeeded
in proving an embedding theorem for idempotent ternary quasigroups.
In the present paper, denoting by N(p) the minimal order of d-
quasigroups in which the partial idempotent d-quasigroup (P, p) is
embedded, we show that (P, p) is embedded in an idempotent d-
quasigroup (@, q), such that |Q| < 2N(p) if d is odd and |Q| = 3N(p)
if d is even.

For d = 8 this is an improvement on Lindner’s result, but when
d = 2 our construction gives a higher upper bound than Hilton’s.
The reason for this is that Hilton’s construction relies on the fact
that a partial quasigroup can be embedded in a quasigroup with the
order doubled. This is not known to be true when d > 2 and a
direct generalization of Hilton’s construction cannot be applied.

2. Notation and definitions. If A is a set and xe A?% then
x, denotes the tth component of x = (x, @, ---, 2,). If xc A, T A?
is defined as Z = (¢, #, +--, ). Similar notation applies to the funec-
tions f: X —-Y?% and g: X —Y. For every ze€ X

f(x) = (fl(x)’ fz(w)’ tt fd(w))

and for every xe X¢ g(x) = (g(x,), 9(x;), « - -, g(x)). The function 4,:
A — A° is defined as 4,(x) =% for all xeA. The restriction of
fiS—T to AS S is denoted by f|A. We may take exception when
f is a d-ary operation, in which case f|A will often be abbreviated
by f. When no danger of ambiguity exists, we do not distinguish
between h:S— T and ¢g: S —U if h(x) = g(x) for every zcS. The
symbol [z, y¥] denotes the d-tuple

351



352 J. CSIMA

((xu yx): (-7/'2’ yz)9 MR (xdy yd)) ’

.U stands for {[x, y]:ye U} and S, denotes the Cartesian product
{x} x S.

If @ is a nonempty finite set of cardinality » and d is a natural
number, we say that ¢: U — Q is a partial d-quasigroup of order
n, provided U Z @ and the equation q(x) = ¢(y) implies that either
=149 or else x and y differ in at least two of their components.
The partial d-quasigroup ¢ may also be denoted by (@, q) or (@, U, q).
If U= @ then ¢ is a d-quasigroup of order n.

We observe that if (@, ¢) is a finite d-quasigroup, then given
Fpy Lgy ** %y Tyegy Lypyy =+, 5, and 9y in @, there exists a unique z,€Q
such that

QX Ty =0y Ty) = Y -

A partial d-quasigroup (Q, U, q) is tdempotent if x ¢ @ implies
ze U and q(x) = =.

In order to simplify our terminology we refer to ordinary finite
quasigroups by calling them binary quasigroups and use the word
“quasigroup” to abbreviate the expression “finite d-quasigroup”.

(S, T, s) is a partial subquasigroup of the partial quasigroup
(P, U q), of SCQ and s =q|T. A partial quasigroup (S, T, s) is
tsomorphic to (@, U, q), if there exists a bijection ¢: S — @ such that
HT)=U and q(d(x)) = ¢(s(x)) for all xeT. (S, T, s) is embedded
(“can be embedded”) in (@, U, q) if there exists an injection ¢: S — @
such that ¢(T) S U and q(¢(x)) = &(s(x)) for all xeT. Evidently,
(S, T, s) is embedded in (@, U, ¢) if and only if the latter has a
partial subquasigroup isomorphic to the former.

A funection ¢: @ — Q% is a transversal of the quasigroup (@, q) if

(1) q@t(x)) =« for all z€@

(ii) « == y implies ¢,(x) #= t,(y) for 1 =1,2, ---, d. We observe
that if (@, ¢) is idempotent, then 4, is a transversal of (@, ¢). Some
quasigroups do not possess transversals. A transversal ¢ of (Q, q)
is an offbeat transversal if &(x) = 7 for all ¢, ye@Q. We say that
J:Q—Q° fixes Pif PZ Q and f(x) =Z for all x¢ P.

3. Transversals and embedding.
LEMMA 1. Let n=2. Then for every odd d = 3 there exists
an tdempotent d-quasigroup (Q, q) of order m possessing an offbeat

tramsversal.

Proof. Let @ ={0,1, ---, n — 1}, let
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(d—1)2
) =a, + ZZZ:; @y — Tpiya) (mod n)
and let
@) =@wz+1z+1---,2+1) (modn).

Then (@, ¢q) is an idempotent quasigroup with ¢ as an offbeat trans-
versal.

LEMMA 2. Let n=3. Then for every d =2 there exists an
tdempotent d-quasigroup of order n with an offbeat tramsversal.

Proof. We may assume that d is even as Lemma 1 covers the
case when d is odd. We first deal with the case when d = 2. Figure
1 shows an idempotent binary quasigroup of order 6 with an offbeat
transversal 7.

01 2 3 45

0 2[1]5 38 4 (0)=(,4)
4 15 2[0]3 <@=(,2
3]4 2 1 5 0 (2 =(,5)
50 43 12 =20
2[5]/3 0 4 1 <z4)=(53)
1 3 042 5 6)=(@41

FIGURE 1

(AN VU NI S N )

For all other orders m = 3 the desired binary quasigroups can be
constructed with the help of orthogonnl Latin squares. Now let
d=4, d even and n=83. Let @ =1{0,1, ---,n — 1} and let (@, 1)
be an idempotent binary quasigroup (of order ») with an offbeat
transversal z. Let

a(w) = Uy 7) + 3 (@ — @) (mod m)
and let

t(x) = (z,(x), T(x), X, X, * -, x) .

Then (Q, q) is an idempotent d-quasigroup with ¢ as an offbeat trans-
versal.

LeEMMA 3. Let (Q, q) be a d-quasiguoup with a transversal t
and let
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g,(x) = q(t.(®), (), -« -, ta(,)) -

Then (@, q.) is an tdempotent quasigroup.

Proof. It is clear that ¢, maps Q¢ into §. Suppose that x = ¥y
and ¢,(x) = ¢q,(y¥). Let ¢ be such that x, # y,. Then ¢,(z,) = t.(%.).
Since

Q(tl(xl)’ tz(xz), ] td(xd)) = Q(tl(y])! tz(yz): ] td(yd))9 (tl(wl)) tz(xz)» %y
toxy)) and (t.(y), t:(4,), * -+, t,(¥s) must differ in at least two com-
ponents. Hence there exists a j == ¢ such that ¢;(z;) # t;(y;) implying
x; + ¥;. Thus 2 and y differ in at least two components and (@, q,)
is a quasigroup. If ze€@, then

2(2) = q(t.(2), £:(2), -+, 1,(2)) = q(8(2)) = 2

and (@, q,) is idempotent.

LeMMA 4. Let (P, p) be an idempotent partial subquasigroup
of a (not mecessarily idempotent) d-quasigroup (Q, q) and let ¢t be a
transversal of (Q, q) fixing P. Then (P, p) 48 a partial subquasigroup
of @, q,)-

Proof. It suffices to show that ¢ and ¢, agree on P?. Let z ¢ P°.
Then indeed

2:(®) = q(t,(x), to(x,), -+, tal@e)) = q(y, X5 = -+, ) = Q) .

DEFINITION. The product (@, q) of the d-quasigroups (R, r) and
(S, s) is defined as follows. Q = R x S and for every

z= |z, yle (R x S)*
q(z) = (r(x), s(¥)) -

If ¢ and ¢’ are transversals in (R, ) and (S, s) respectively, their
product t is defined by

tx, y) = [t'(@), t"(y)] .

LEMMA 5. The product (Q, q) of the quasigroups (R, r) and (S, s)
is a quastgroup. It t' and t” are transversal of (R, r) and (S, s)
respectively, then their product t is a transversal of (Q, q). If (V, r)
18 a subquasigroup of (R, r), then q|(V x 8)* is a subquasigroup of
Q, 9). If (R, r) is idempotent and x € R, then (S,, q) is isomorphic
to (S, s). The product of idempotent quasigroups is idempotent.

Proof, Let (@, q) be the product of (R, r) and (S, s). Suppose
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q([z, y]) = q([, v]) and [, y] # [4, v]. Then r(x) = r(u) and s(y) =
s(v). If x # u, then x and w differ in at least two components and
so do [z, ¥] and [u,v]. If = u, then ¥ #+ v and again [x, y] and
[u, v] differ in at least two components. Thus (@, q) is a quasigroup.
Suppose ¢ and ¢’ are transversals of (R, r) and (S, s) respectively
and ¢ is their product. Then

q(t(x, ¥)) = q[t'(x), t"(y)] = (r({t'(®)), s(t"(¥))) = (%, ¥) -

Suppose (x, ¥) = (w, v). If x # u, then #(x) = ti(u) for 1 =1,2, -+, d;
and if y # v, then ¢(y) # ¢/(»). In any event, if (x, ¥) # (u, v), we
have

tx, ¥) = (L), t'(y) # (i), (V) = ti(w, v)

for all 4. Thus ¢t is a transversal of (@, ¢). Suppose (V,r) is a
subquasigroup of (R, ). Then the range of ¢|(V x S)? is V x §, so
a/(V x 8)* is a subquasigroup of (@, q). If (R, ») is idempotent, then
y— (x,y) is an isomorphism from (S, s) to (S, q) for every xzc R.
If (R, ) and (S, s) are both idempotent and z = (z, ) € @, then

@) = (r@), s(¥)) = &, y) = 2
and (@, q) is idempotent.
LeMMA 6. Let (R, r) and (S, g) be idempotent quasigrouns and

let (@, 1) be their product. Let PSS and let T be an offbeat trans-
versal of (R, r). For every z = (x, ¥) € Q let

_ (@, ) if yeP
(zd), ¥) if yeP
for i =1,2, ---,d. Then t is a transversal of (Q, f), fixing B x P.

Furthermore, if (x, ¥)€Q and ac R, then t(x, y)e S¢ of and only if
x=a and y€P.

t:(2)

Proof. Let (z, ) e @ and (u, v) € @ be such that ¢,(z, ) = t,(u, v)
for some 4. Then necessarily y = v. If y ¢ P, then

(@, ¥) = t(x, ¥) = t(u, v) = t;(u, ¥) = (u, ¥) = (4, v) .

If y¢ P, then (z,(x), ¥) = (z.(u), v) implies (x, ) = (u, v). Ilf yeP,
then

S, v) = f(z, ¥]) = (@), 9(¥)) = (2, ¥) .
If y¢ P, then
S@t@, v) = f([z(x), ¥]) = (r(z(=)), 9(¥) = (=, ¥) .
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Thus t is a transversal of (@, f). It is evident from the definition
of ¢, that ¢ fixes R X P. If ac R and y € P, then of course ¢(a, ¥) €
S¢ On the other hand if (x,%)c@,acR and y¢ P, then t(x) ¢ S?
because 7(x) = @ is impossible as 7 is an offbeat transversal.

LEMMA 7. Let (Q, r) be a quasigroup with a subquasigroup (S, 7)
and let (S, s) be an arbitrary quasigroup (on the set S). For each
r€Q* let

s(x) if xeS?

W=l if aes

Then (@, q) is a quastgroup.

Proof. Let xe @ and ye @“ such that x =y and q(x) = q(¥).
If both x and ¥ belong to S¢% then s(x) = s(y) implies that x and ¥
differ in at least two components. The same is true if neither x
nor ¥ belong to S¢ If, say e S? and y ¢ S% assume that x and ¥
differ in exactly one component, say their first. Then x, # y, and
2, =19y, if 1 = 2. It follows then, that y, ¢ S. Let ;€S be such that

(1, Xy o0, Tg) = (B, Tpy 00y Tg) -
Then #, + %,. On the other hand,
/,-(x;, Wy + 00y By) = S(w) = r(y) = 1Yy Loy **+, xd) ’

implying x; = ¥,, a contradiction. Thus (@, q¢) is a quasigroup.

DerINITION. If (@, 1), (S, ), (S, 8) and (@, @) are as in Lemma 7,
then (@, q) is called the replacement of (S, r) by (S, s) in (Q, 7).

THEOREM 1. Let (P, U, ) be a partial idempotent sub-d-quasi-
group of a d-quasigroup (S, s). Then (P, U, p) can be embedded in
an tdempotent d-quasigroun (Q, q) such that |Q| < 3|S| if d is even
and Q| < 2|S| if d is odd.

Proof. Let (P, U, ») be a partial idempotent subquasigroup of
(S, s). First we deal with the case when |S|=3. Let g be such
that (S, g) is an idempotent quasigroup and let (R, ) be an idempotent
quasigroup with an offbeat transversal z. Let (@, f) be the product
of (R, r) and (S, g). Define ¢ as in Lemma 6. Then ¢ is a transversal
of (@, f). Let a€R. Then ¢ fixes P(SR x P). Define s:8¢— S,
as follows: s'([@, z]) = (a, s(2)) for all z€ S% Then (S, s) is isomorphic
to (S,.8") via ¢(y) = (a, y) for all y € S. Indeed, ¢(S%) = S¢ and s'(4(z)) =
s'([@, z]) = (a, 3(z)) = ¢(s(z)) for all ze€ 8% Let (Q, q) be the replace-
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ment of (S,, f) by (S,, ') in (Q, f). Then ¢|P establishes an iso-
morphism from (P, U, p) to (P,..U, ¢). Thus (P, U, p) is embedded
in (@, ¢). Next we will show, that ¢ is a transversal of (@, q). It
suffices to verify that q(t(x, ¥)) = (x, y) for every (x, ¥) € @. Suppose
(x, ¥) € Q. If t(x, y) € Si, then q(t(x, ¥)) = f(t(x, ¥) = (x, ¥). Ifi(x, y)e
S¢, we must havex = ¢ and y € P by Lemma 6. But then

q(t(x, ) = q(t(a, ¥)) = q([@, ¥]) = s'(1@, ¥]) = (a, s(¥))
= (a, p#)) = (a, y) = (@, ¥) .

Thus t is a transversal of (@, ¢). By Lemma 4 (P, U, p) is embedded
in the idempotent (@, q,). Clearly, |Q| = |R||S| and the smallest
idempotent quasigroup (R, ) with an offbeat transversal is of order
3 or 2, depending on the parity of d.

Now let us look at the case when the order of (S,s) is one
or two. Then, if P= S, (P, U, p) is embedded in the idempotent
(S, s). If P+ S, then (P, U, p) is the unique (idempotent) quasigroup
or order one, embedded in itself.

THEOREM 2. Let (P, p) be a finite partial idempotent d-quasigroup.
Then (P, p) can be embedded in a finite idempotent d-quasigroup
(Q, Q). Furthermore, tf N(p) denotes the minimal order of d-quasi-
groups tnto which (P, ) can be embedded, then @ can be chosen so
that |Q] < 2N(p) +f d is odd and |Q| < 3N(p) if d is even.

Proof. Using Cruse’s result [1] that every finite partial d-quasi-
group is embedded in a finite d-quasigroup, our theorem immediately
follows from Theorem 1.
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