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I. GLICKSBERG

For certain bounded domains D in C* any continuous
function on DUd, ., which is holomorphic on D automatical-
ly extends continuously te D-.

For a bounded domain D in C* let A(D) be the sup normed
algebra of functions continuous on D~ and holomorphic on D, and
let 0 =d,, denote its Silov boundary, so 0 caD. Of course this
inclusion can be proper, and in his thesis [O] A. Aytuna raised
the question of whether every bounded continuous function on oUD
holomorphic on D necessarily extends continucusly at all points of
0D\6. Aytuna showed this held when » = 2 for the half-ball D =
{2: 2] < 1, Rez > 0}, where aD\0 = {z: |z] < 1, Rez, = 0} is a union
of analytic dises and normal family arguments apply. In fact there
are simple domains for which continuous extension fails, as we shall
see below (§3), while it holds rather trivially for starlike domains;
our purpose here is to point out some classes of domains for which
it holds, and indeed something stronger obtains, by virtue of some
elementary function algebra facts combined with the Oka-Weil
approximation theorem.

Recall that K< D™ is a peak set for A(D) if there is an f in
A(D) with f(K)=1 and |f]| <1 on D\K. P(K) will denote the
closure in C(K) of the analytic polynomials and H“(D) the bounded
holomorphie functions on D.

THEOREM 1. Suppose 0D\0 is differentiable and covered by a
union of peak sets K for A(D), for each of which
(1.1) f holomorphic near K implies f|K is uniformly appro-
ximable by polynomials, and
(1.2) xze K\0 implies (0, ¢,)v, + KC D, where v, is the tnward
unit normal to oD at x, and x—¢c, 18 a Positive con-
tinuous function on 0D\0.
If h is bounded and holomorphic on D, and, for one of our peak
sets K,, has a continuous extension to D U (0 N K,), then h extends
continuously to D U K,.

In particular if » extends continuously to D U it extends to
an element of A(D); in fact in this case we need not assume »h
bounded on D. Hypothesis (1.1) holds if each peak set K is poly-
nomially convex by the Oka-Weil approximation theorem (cf. [3],
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426 I. GLICKSBERG

which will also be our reference for facts on uniform algebras).

An alternative to (1.1) is the assumption that each K provides
the spectrum of the (necessarily closed {[3]) algebra A(D)|K: for
then K is the joint spectrum of the coordinate functions and the
functional ecalculus [3, p. 76] applies to assert any f holomorphic
near K has f|Ke A(D)|K, which is just the property used. (Note
that if D~ is the spectrum of A(D), each K has this property.)
Hypothesis (1.2), as we shall see, is one of many which might be
used; the assumption that we can move all of K into D can be
relaxed considerably in the presence of additional hypotheses, with
some complication in the argument; in fact we need only know that
(as more smoothness of 0D\0 guarantees) near each x,€0D\6 not too
small chunks of each K can be moved along a normal into D, with
rather more information on our K,.

THEOREM 2. Suppose 0D\0 is a C* manifold and s covered
by a union of peak sets K for A(D) which are polynomially convex.
Suppose that for one of these, K,, there are v; —0 in C* with
v;+ K, D. Then if h is bounded and holomorphic on D and extends
continuously to DU (0N K,), h extends continuously to D U K,.

More generally, suppose K, only contains polynomially conwvex
subsets K; for which K; + v;C D for v; — 0 in C*, while for some
z, € K\o

(2.1) each probadbility measure A on 0N K, representing z, on

polynomials is a w* cluster point of a bounded sequence
{n;}, where N; is a complex measure on K; multiplicative
on polynomials.
Then any bounded holomorphic h on D continuous on DU (0N K,)
has a unique cluster value at z,. (The first assertion follows from
the second by taking K; = K, A; = \.)

1. One of the main function algebra facts we shall use is that
if K is a peak set for A(D) then A(D)|K is closed in C(K) [3];
another is that 0 N K provides a boundary for this algebra. (Any
representing measure for € K on ¢ must be carried by K, hence
by 0N K, as one sees by applying it to f", where f e A(D) peaks
on K, and letting n — «.) Both enter our proof of Theorem 1
which has been greatly simplified by T. W. Gamelin, to whom T
would like to express my thanks. 5

Let Ec D~ be closed and contain the Silov boundary o. The
basic step in our proof of Theorem 1 is the more general.

LEMMA 1. Suppose 2,€0D\0 lies in the peak set K for A(D),
K satisfies 1.1), and v; + K< D for a sequence v; —0 in C~.
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Then if

(*) lim sup |g(2)| < lim sup {g(2)}, g€ H*(D) ,
2€ D—zg 2€ D-E

any fe H*(D) which extends continuously at all points of ENK

extends continuwously at z,.

For the proof, define f; € C(K) by f;z) = f(z + v;). Because of
(1.1) and our hypothesis that v; + K< D we know f; is a uniform
limit of polynomials on K, hence of elements of A(D)|K; since this
algebra is closed, f;e A(D)|K. But f extends continuously at all
points of E N K so the sequence {f;| K N K} converges uniformly on
EnN K, a set which includes the boundary é N K for A(D)|K, so
that in fact {f;} converges in A(D)|K. Its limit is the restriction to
K of some ge A(D), and evidently for we ENK, g(w)=lim,.,_., f(2).
Thus f — ¢ tends to zero at each point of E N K, and given ¢ > 0,
by compactness we have a neighborhood U of ENK in D~ for
which |f —g| <e on UND.

Now let h e A(D) peak on K, and let V be an open neighborhood
in D™ of E\U at a positive distance from K. Since A™ — 0 uniform-
ly on V we have an m for which |[(f — g)h™| < e on V, and the
same is true on UN D because |f — g| < ¢ and || < 1 there. Thus

limpsgp [(f —oh™()| = ¢

so that exlimsup..p.., | (f(2)—g(2)h™(z)|=lim sup..,-., | f(2)—g(z)| by
(*). Since ¢ is arbitrary g(z,) evidently provides the unique cluster
value for f at z,, yielding our conclusion.

A simple condition insuring (*) is provided by

LeMMA 2. Suppose that for each sequence {z;} in D converging
to z, there are closed sets .o7; and E; for which z;€.5¢;, E;C 97;C
D, limsup E; C E, while sup|f(2%7)| = sup | f(H)], all fe H=(D).
Then (*) holds.

Let M denote the left side of (*) and choose z; in D so that
[ fzH)l— M, z;—z,. With E; and .54 as above we have w;ec E;CD
for which | f(w;)| — M, and by hypothesis the w; accumulate only
in E, so trivially (*) follows.

Now in order to prove Theorem 1 it only remains to verify
that we can apply Lemma 2 to any z,€ K,\0 since in the presence
of (*) Lemma 1 applies. So suppose z; — 2, 2;€D, and let x;€0D
be nearest z;; taking j large we can assume x; lies in 0D\d, and in
fact in a compact neighborhood of z, in dD\0 so that by (1.2) and
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the continuity of x — ¢, for some fixed ¢ > 0
0, ey, + K;D

for 5 = j,, where K; is a peak set containing z;. Now z; = x; +
t;v,;,, where t; — 0 necessarily (indeed ¢; = dist (2, 0D) < dist (2, 2)),
and we only have to take .%; = K; +{v,,CD and E; = K; N E +
tv,,;: evidently lim sup E; C K while sup | f(E;)| = sup | f(5%7)| follows
from the fact that K; N ED K; N0 is a boundary for P(K;), so that
by translation E; is a boundary for P(5¢;), which contains
H=(D)|2¢; because of (1.1). Our proof of Theorem 1 is now com-
plete.

Note that our use of the differentiability of 0D\0 was needed
only to allow us to satisfy the hypotheses of Lemma 2; this can be
accomplished by various other hypotheses on D. For example

THEOREM 3. Suppose D is a bounded domain in C" and K oD
1s o peak set for A(D) which is polynomially convex and for which
K + v; 2D for a sequence v; — 0 in C,. Suppose a dense subset of
D lies on positive dimensional subvarieties V of D all having V ™\
VcouUd, where 4 C* is compact and disjoint from K.

Then any he H*(D) which has a continuous extension to D U
@ N K) has a continuous extension to D U K.

Here we deduce (*) for E =0 U 4 from the maximum principle
for varieties, noting that we can restrict ourselves to a dense set
of z in D on the left side of (*). So Lemma 1 implies Theorem 3
directly.

We should also note that our proof of Theorem 1 applies equally
well to convex D, where the fact that dD\0 is a union of polynomi-
ally convex peak sets follows from the fact that for each z,¢0D
one has a we C" for which

z— Re (z, w)

assumes its maximum over D~ at z, so a multiple of z — exp (2, w)
provides an element of A(D) which peaks on a subset K of 0D
containing z,; trivially K is convex and thus polynomially convex
(via such functions of course). One has only to replace translation
along normals by maps

0(2) = (1 — &)z + ¢z,

where z,eD is fixed. (But in fact that fe H™(D) continually
extendable to all of D U0 has a continuous extension to D~ for D
starlike is trivial: with 2z, now the star center f. = foo.e A(D), and
J. — f uniformly on 9, as ¢ — 0, so that f.— ge A(D); since f.—f
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pointwise on D, f =g on D.) Of course convex domains are special
cases of those for which, for our K,, we have a sequence of holo-
morphic maps o; of D~ into D with o;(k) -k for each ke K, N 0,
and such maps will serve in place of our translations z— 2z + v; in
Lemma 1; in particular, Theorem 3 holds if our assumption that
K + v;c D for v; — 0 is replaced by the existence of such a sequ-
ence o;.

Part of our proof of Theorem 1 yields some information even
when we have no continuity at the Silov boundary.

COROLLARY 4. Let D be as in Theorem 1, or convex, and let
K be one of our peak sets. If fe H*(D) then cl(f, K), the set of
cluster wvalues of f at points of K, lies in & = &(cl(f, o N K)),
the closed convexr hull of the set of cluster values at points of 0N K.

This follows precisely because (*) holds: if our inclusion were
to fail, so some weecl(f, K)\&, (necessarily a cluster value at some
2, € K;\0), then so would (*) for exp (¢“f), where ¢ is chosen so that
Re (ew) > sup Re (¢%").

2. The proof of Theorem 2 is more involved than that of
Theorem 1 because we cannot make as great use of the closure of
the algebra A(D)|K. The tubular neighborhood theorem [2, p. 9]
allows us to deduce it from the more general result below, in
which T(x, 6) denotes the square polycylinder of radius 6 about =z.

THEOREM 2. Suppose dD\@ is differentiable, and covered by a
union of polynomially convexr peak sets K for A(D), and for each
x,€ 0D\0 there are ¢, 0, > 0 with 20 > ¢ for which II(x, & + 0)No=
@, while x ¢ I(x, ¢) N (0D\0) implies

(2.0) (0, My, + (K, N (w,0) D

where K, 1s one of our peak sets containing x and v, is again the
inward unit normal. Finally suppose that for one of our peak
sets K, we have a sequence of polynomially convex subsets K; and
v; — 0 in C* with v; + K; C D, and for some z,€ K,\0

(2.1) each probability measure N on K,N 0 representing z, on
polynomials is a w* cluster point of a bounded sequence {\;}, where
N; 18 a complex measure on K; multiplicative on polynomials.

Then if he H*(D) extends continuously to DU (@ N K,) it has a
unique cluster value at z,.

To begin our proof of Theorem 2, let B be the uniformly closed
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algebra of functions continuous D U K, and holomorphic on D, and
let X be the closure in its spectrum of D U K, (hence of D itself),
with p the restriction to X of the map dual to A(D)— B. Since
the elements of B are all continuous on D U K,, the natural injec-
tion of that set into X is continuous, 1 — 1, while o provides a
continuous inverse, so D U K, is imbedded homeomorphically in X.
In fact, D forms an open subset of X while o is 1 — 1 over D, as
is easily seen [4, p. 421]; moreover p is also 1 — 1 over K since" no
be B (and hence no element of C(X)) can separate 0 (z) for ze K,
for if xep™(2) and {z,} is a net in the dense subset D of X with
2, ~« in X then z, = 0(z,) — o) = z in D7, so

b(z) = lim b(z,) = lim b(z,) = b(z) = b(2)

since b e B is continuous on D U K.

Of course p maps X into, hence onto, D~; moreover local maxi-
mum modulus and the fact that D is open in X shows 6, N D = &,
s0 0, C p~(0D) since X forms a boundary for B. 1In fact I claim
3, Cp8). If not some element b of B peaks at x e 0 '(0D\0), and
letting x, = p(x) € 6D\0 we have by hypothesis ¢, 6, 7 > 0, with §>2e¢,
I(x,, e +0)No =@, and

(L) ©, 7y, + K. N lI(x,0) =D

for any x in II(x, ¢) N (0D\0), where K, is one of our peak sets
containing x. Replacing b by b* for %k large we can suppose |b| <
1/4 on D\II(z,, 1/2n min (¢, %)), while |b(z)| > 3/4 for some z e Il(x,,
1/2n min (¢, »)). Now let oD be nearest z, so z =2 +ty,, 0 <
t < 1/2min (¢, ), and, since wxe€l(x,, ¢), (1) applies. In particular
this says b(- + ty,) is analytic near the polynomially convex set
K,NIl(x,0), and so lies in P(K, N II(x, 0)) by Oka-Weil. But this
algebra coincides with the uniform closure of P(K,)|(K, N II(x, o))
clearly, whose Silov boundary, by Rossi’s local maximum modulus
theorem [3], lies in the topological boundary o, = d(K, N II(z, 9)) =
K,naoll(x,d) of K, N II(x,0d) in K, (since II(x, 6) C I1(x,, 0 + €) misses
0). Because t < ¢ and 0 > 2¢, 0, + tv, lies in the closure of D\II(x,,
1/2n min (g, 7)), where |b| < 1/4, and so we obtain a contradiction
3/4 < 1b(2)] = |blx + tv,)| < sup|b(d, + tv,)| < 1/4, establishing the
claim that 0, < 07%(0).

Moreover, if ge A(D)C B peaks on K, then § = gopeﬁ peaks
on p7'K,, while the closed algebra B|pK, has, as a boundary, d,N
o K,cp'oNp 'K, = p7'(0 N K,;) which is precisely 0 N K, since p is
1 —1 over K, as we saw earlier.

Now consider our function % holomorphic on D and continuous

! Here ™ is the Gelfand representation of B.



BOUNDARY CONTINUITY OF SOME HOLOMORPHIC FUNCTIONS 431

on DU (N K,. We shall show

(i) h has a continuous extension h, to X\07(K,\d);

(ii) all probability measures N on 0§, representing our fixed
2,6 K\0 are multiplicative on the closed subalgebra B, of
C(X\0(K,\0)) generated by B and h,;

(iii) the subset 0; of X\o™'(K,\0) forms a boundary for B,.

Once these facts are in hand our conclusion follows by noting
that if X, is the closure of X\07(K,\0) in the spectrum M, (hence
that of D as well) and p, is the restriction to X, of the map dual
to A(D)— B, then all points of 0;'(z,), for our fixed z,¢€ K,\0, are
represented by measures )\ on the boundary 4, for B,(iii) which lie
in the set of measures on J, representing z, on B; since (ii) says
these are all multiplicative on B, they all represent the same func-
tional: if N and )\ represented distinct functionals we’d have b¢ B,
with A(b) = 0, M (b) = 1, whence multiplicativity of (A + \')/2 yields
1/2 = 1200 + M) = A/2(0 + N)(B))* = 1/4. Thus 05'(z,) is a single-
ton, and of course this implies ~» has a unique cluster value at z,
since if 2, — 2, #;€D, any cluster value of {(z,)} is h(x) for some
re X, with p,(x) = z,.

So it remains to prove (i)-(iii).

To see (i), note that

X =p7(D7) = p7(D) U p™(@D\K,) U p7'(0 N K,) U p~(K,\9)

so X\o(K,\0) = p7'(D) U p'(0D\K,) U p'(@ N K,), and we only have
to see h, as a function on D C X, has a unique cluster value at each
xep'(0D\K,) U p7'(@ N K,). For the second set this is our hypothe-
sis on &, and for the first, if g e A(D) again peaks on K, then b =
A —-gheB, so b(x)(1 — §(=))™ provides our unique cluster value at
x € p~H(0D\K,).

For (ii) recall that by hypothesis we have v»; -0 in C* and
polynomially convex sets K;cC K, with v; + K;C D, while each
probability measure N on o0 N K, representing z, on P(K) is a w*
cluster point of a sequence {)\;}, where \; is a complex measure on
K; multiplicative on polynomials.

As we know any probability measure )\ representing z, on B
and carried by 6 is carried by d;N oK, Ccpo™00) N e K, =
oo NK,)=0NnK, and so M =2\ as above, as a measure repre-
senting 2, on A(D), hence on A(D)|K,D P(K,). If o0;z) =2+ v;
then trivially the translated measures oi); (defined by oin;(f) =
Ni((feo;)) still have N as a w* cluster point (now in the space of
measures on X) since bog; — b uniformly on K,Noé and {N\;} is
bounded. Since hoo; is analytic near K;, and so in P(K;), as is
boo; for be B,
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iNg(h"0) = Nj((ho;)"bo0;) = (Nj(hoa ;)"\ s(boo ;)
— Ufkj(h)%aij(b)

whenece MA"0) = NMh)"MD), so N is multiplicative on B,, and (ii) holds.

Now only (iii), that 0, c X\ '(X,/d) forms a boundary for B,
remains to be seen. If be B, peaks at xe€¢ W = X\(0; U 0;'(K,)) and
U is a compact neighborhood of z lying in W then for » sufficiently
large b, = b*(1 — ¢)(=0 on K,, ¢ again our element of A(D) peaking
on K,) is an element of B which assumes its maximum modulus
only within U, hence not on 0, so 0, can not be a boundary for
B. Thus the peak points for B, in X, lie in d; U 0;'(K,), s0 05 C
0z U 07" (K,). Since the dense open subset D of X lies in X)\o,(X,),
the peak set 0;'(K,) is nowhere dense in X,. But now if V =4,\
0z C 07 (K,) is nonvoid it must contain a peak point x, for B, (as a
relatively open subset of 0; must), and since the element 1 — § of
B, vanishes on p;y(K,)D V it must vanish on a neighborhood of z,
in X, by [5, 2.1], despite the fact that we have seen (1 — §)™%(0) =
0;'(K,) is nowhere dense in X,. We conclude 0, 0, so our proofs
of (iii) and Theorem 2' are complete.

A variant of our argument yields another version of Theorem 2.

THEOREM 2"”. Suppose 0D\0 is a C* manifold and is covered by
a union of peak sets K for A(D) each of which forms the spectrum
of AD)|K (which 1is automatic if D~ s the spectrum of A(D)).
Suppose that for omne of these, K,, v; + K, D for v;—0 in C"
Then any bounded holomorphic h on D extending continuwously to
D U (@ N K,) extends continuously to D U K,.

This replacement of polynomial convexity for our K’s is possi-
ble since here K N II(x, 0) is the joint spectrum of the coordinate
funetions for the algebra (A(D)| K N II(x, 6))", so our argument that
05 C p7'(0) proceeds as before using the holomorphic caleulus in place
of Oka-Weil; a similar replacement occurs when we consider the
functions hoo; of course.

Note that when (1.1) in Theorem 1 is replaced by polynomial
convexity of the peak sets K that result is contained in the asser-
tion of Theorem 2’ (with all K; = K;,). We should also note a
property of such domains: for D as in Theorem 1 (or starlike) any
he H*(D) bounded near 0, say by M > 0, is bounded on D, and by
the same constant. (If h were not bounded by M then we have z;
in D with |h(z;)] — sup |h(D)| > M, and we can assume z;— z,,
necessarily in dD\0; if x;€0D is nearest z; and we take j = j, all
the z; will lie in a compact neighborhood of z, in dD\é on which
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€. = ¢€>0, 50 2; =a; + tv,;, with ¢; <e for j = j,. But now since
K,; + ty,,c D while h(-+tw,,) is in P(K;) as before,

|h(z;)| = sup |h(K,; + tp,;)| = sup @ N K,; + tv,;)]

so M <sup|{h(D)| = lim [h(z;)| < limsup {h(@ N K,; + tv,,)| = M, our
contradiction.) As a consequence if D s as in Theorem 1 (or
starlike) and h e A(D) then h(d U D) provides the entire range of h,
h(D7). To see this we need only show 0¢ h(d U D) implies 0 ¢ h(D™).
But the hypothesis implies 1/k is holomorphic on D and bounded on
(and so near) 9, so 1/h is bounded on D~ by our remark, and 0¢
h(D7). (Even when D~ is the spectrum of A(D), so k(D) is the
spectrum of h, the familiar Banach algebra fact that oh(D~) C h(9),
which thus implies A(D) U oh(D™)Ch(@ U D), does not quite yield
this since 0h(D) may properly contain ok(D™).) More generally, for
he H*(D) the set of cluster values of h at all points of 0D, ¢l (h, D)
h(D) Uecl(h, d) for D as in Theorem 1, by the same argument.

An improvement of Theorem 2 can be obtained via the basic
lemma of [1], viz:for ac A(D) and ECC a closed set of (inner
logaritmic) capacity zero, if h has a single cluster wvalue at each
point of 0 N (K\a (E)) the same is true at z, if z,€ K,\a *(F). Here
one argues exclusively with Jensen measures. 7, is now only con-
tinuous on Y = (X\0o (K,\0))\(a (&) N d), but since Ma '(E)) = 0 for
each Jensen measure )\ representing ze K\(0 U a '(#)) on B (by [1,
Lemma 1)), h,o0; — h, a.e. N\, so as before one concludes all such
Jensen measures for z coincide on the subalgebra B, of C(Y) gene-
rated by B and h,, and represent the same functional ¢, on B,. On
the other hand by the proof of (iii) d, is the closure in My, of 45\
a '(E), and it is easy to see the new points lie in pj'a (E)=a “(E);
since each element of 07'(z) is represented by a Jensen measure
on 0z, which necessarily vanishes on ¢7'(¥), X is in fact carried by
0z, and represents z on B. But now )\ represents ¢, and 0;'(z) is
a singleton as desired.

3. There are simple domains for which continuous extension
fails. Here is one which amounts to a union of two convex domains,
deformed so that two discs in the boundary meet in precisely their
common center, and thus obstruct continuous extension; as will be
noted there is a vast gap between the example and the domains
previously considered.

In C° let

Dl = {t(zu Oy 27’) + (1 _t)w~0 < t < 1r |z1’ < li \w~—(0, O, 2)‘ < 1} ’
D, = {t(0, 2, —21) + (1 —Hw: 0 <t <1, |2, <1, [w—(0,0,2)] <1},



434 I. GLICKSBERG

and D, = D, U D, Note that z,D, lies in the open right half plane,
while 7.D; meets the imaginary axis in +2¢; evidently =;'(4R)N Dy
is the union of the two closed disecs

4y ={(2, 0, 20): |z,| =1}, 4, ={(0, 2, —20): [2,| = 1} .

Thus if we set 0(z, 2,, 2;) = (2, 2, 25) and D = pD, then o0 maps Dy
onto D~, and D, biholomorphically onto D. In fact o is 1 —1 on
D~ except at the centers (0, 0, ==27) of 4,, 4, both of which map to
(0, 0, —4), which is precisely p4, N p4,. Thus the function h=m;00™
on D7\{(0,0, —4)}, which provides the square root of the third
coordinate, is continuous, and holomorphic on D. Since it yields
values near both +2¢ in each neighborhood of (0,0, —4) in D7, it
has no continuous extension to D~. Finally (0,0, —4)¢ d, ), (essen-
tially since each 04, is an analytic disc), and we are done.

(One can easily modify D, so that oD\o4, U pd, lies in 6,y
moreover p4, U o4, ean be made a peak set (as in the example,
where (4 — 2,)/8 is the peaking function), and polynomially convex.)

Added in proof (April 1, 1979). I am indebted to H. Alexander
for the following simpler (and basically different) example. In C*
let D={& w):|z] <|w|<1l}. Then 4 = {z, w):|z| =|w| =1}, es-
sentially since any point with |z| = [w]| < 1 lies in a disc where
fe A(D) must be analytic (as lim, -, f(r-, +)); but f=z/w is a bounded
continuous function on D7\{(0, 0)} analytic on D which has no con-
tinuous extension to D~ since (0, 0) lies on too many analytic dises.
(For the same reason (0, 0) lies in no proper peak set.)
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