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This paper considers some characterizations of ex-
ponential polynomials in C(G), the set of all continuous
complex valued functions on a c-compact locally compact
Abelian group G. For feC(G), U; will denote the subspace
of C(G) obtained by taking finite linear combinations of
translates of f. It is known that f is an exponential poly-
nomial if and only if U, is of finite dimension. Our main
result is to show that f is an exponential polynomial when
U, is closed in C(G) if C(®) is given the topology of con-
vergence uniform on all compact subsets of G.

Further characterizations of exponential polynomials are
given when G is real Euclidean n-space, R".

A function be C(G) is additive if b(x + y) = b(x) + b(y) for all
2, yeG and geC(G) is an exponential if g(x + ¥) = g(x)g(y) for all
2, y€ C(G). An exponential polynomial is a finite linear combination
of terms h = b11bg - - - bi»g where b, b,,-- -, b,, are additive, q,, ¢, -+, ¢
are nonnegative integers and ¢ is an exponential.

If f is an exponential polynomial, it is easy to see that U, is
finite dimensional. For if % is as above, then T,h: 2 — h(x — @) is
a finite linear combination of terms b7:b::-.--bimg for each acG
where r; = 0,1, ---,q; for j=1,2, ---, m. A result of Engert [5]
shows that if U, is finite dimensional, then f is an exponential
polynomial. The proof of this result when G is any o-compact
locally compact Abelian group is naturally more involved than when
G is merely B or R". Proofs for the case of C(R) may be found
in Anselone and Korevaar [1] and Loewner [8] who also refers to
C(R™).

Throughout this paper, the only topology considered on C(G@) is
that of convergence uniform on all compact subsets of G. With G
being o-compact, let G be the countable union of compact sets K,.
Let S,(f) = sup {|f(x)|:x € K,} and d(f, 9) = 337-, 27" min (1, S,(f — 9))
for f, g€ C(G). Then d is a metric for C(G) and C(G) is complete
in this metriec.

With such a topology for C(G), if U, is finite dimensional, it is
closed. The converse to this is shown here (Theorem 3) so that in

C(@),

f is an exponential polynomial —= U, is finite dimensional
== U, is closed in C(@).
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In showing that when U, is closed, it is then finite dimensional,
the following notation shall be used throughout. As above, assume
that G = U;-, K, where each K, is compact. For a given function
J in C(@), set

D
S, = {geC(G): =3 a.Tf
where |a;] < p and B, K, for k=1,2, ...,p} .

It is clear that U; = U;-, S,. The method of proof is one suggested
by Edwards [4], pages 38-39 in establishing the result for functions
on the cirele group.

LEMMA 1. S, is pointwise equicontinuous in C(G).

Proof. LetxeG and ¢ > 0. Let B denote the set of all neigh-
borhoods of 0 in G. It suffices to show that there is a Ue B such
that

[flx — @) — f(y — a)] < ¢/p? for all «c K, and all y with y —xz€B.
Then

0@) — 9w < Elaile/p* s

whenever y —x€ U and ge S,.

Set F=2 —K, so if aeK,, =2 —acF. For each e F,
there exists V, C B such that |f(z) — f(B)] < ¢/2p* whenever z — B € V,.
For this V,, there is a W;eB such that W,+ W,cV,. With
{# + Wi peF} forming an open cover for the compact set F,
select a finite subcover {8; + W,}i,. Let W=, W;, and U =
WN(—W)so UeB. If acK, and v —acF, « —aepB + W, say.
Then

y_a:y——x—{—x—an—{—x—aCBz+ Vﬂl

which also contains ¢ — @. Hence f(x — @) and f(y — «) differ from
f(B) by amounts in modulus less than ¢/2p® and the result follows.

LemmaA 2. S, is compact in C(G).

Proof. Use is made of the condition that in C(G), a closed
equicontinuous set S is compact if S[x] = {f(x): f€ S} is compact in
C (see, for example, [3], page 34 or [6], page 234). With f being
continuous and ze @G, {f(x — B): B€ K,} is compact whence S,[x] is
compact in C. To show that S, is closed, let {g,} be any Cauchy
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sequence in S, with g,=3%_, a,,T;, ,f- Since |a,,|<p for all positive
integers ¢, a convergent subsequence a,,, may be found with limit,
say a,, and |a,] < ». Continue in this manner to find convergent
subsequences {a,.}>, for k=1,2,--.,p with respective limits a,
where |a,] < p. Now use {8, .}, K, for k=1,2, ..., p and K, is
compact to find convergent subsequences {B,.}=,. With a,,— as,
la,) < p and B,,— B.€K, as v — = for k=1,2, ..., p, it follows
that g, — ¢ for some g€S, So g,— ¢ as g — -« showing that S, is
closed. Hence S, is compact in C(G).

THEOREM 3. If U; is closed in C(R), then U, is finite dimen-
sional.

Proof. Since U; = U;-, S, is closed in the metric space C(G),
it follows by Baire’s category theorem applied to U; that there
must be as S, that is not nowhere dense. As this S, is closed, it
must have a nonvoid interior. Hence U; contains a compact
neighbourhood of zero. So, by Riesz’s theorem (see, for example
[3], page 65) U, is finite dimensional.

The remainder of this article, concerns exponential polynomials
in C(R"). These functions in C(R™) are finite linear combinations
of terms xPwelz...xivexp (a2, + ayx, + -+ + a,&,) Where 2z =
(%, %y *++, T, )ER", D, Dy +++, P, are nonnegative integers and
a,, a, *-+, a, are complex numbers. In restricting G to be R, little
economy of the proof of Theorem 3 is gained except for Lemma 1.
However, it is considerably easier to show for C(R") compared with
C(G) that if U, is finite dimensional, then f is an exponential poly-
nomial. A new and simple proof is as follows.

Suppose that U, has finite dimension m where m > 1. (If m = 0,
f=0and if m =1 a simpler version of the following suffices.) Let
Gy 920+, U be @ basis of Uy and g=(9,, 95, *+*, ). Then T,g=A(a)g
where A(a) is an m X m complex matrix. From 7,,, = T,T,, one
finds that A(e + 8) = A(@)A(B) and A(0) = I, the unit matrix. Since
T.f - T:f as a— B, A(@) is continuous. So z& R" near 0 may be
chosen and fixed so that A(z) is nonsingular. It is clear from

21tz

aw = ("7 7 awav)a@),

z1 Tn

that each partial derivative of A exists. Letting {e, ¢, ---, ¢,} be
the standard basis for R-,

Djg = lim (A(—he;) — A0)g/h = Cig ,

where the matrix C; = D;A(0). So Djlexp(—C;x;)9) = 0 showing
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that g = exp (C;x;)9; where ¢; is independent of z; for 7 =1,2, --+, n
and ¢; takes value in R™.

From exp(Cx)¢, = exp (Cx,)g, With z, =0 &,(2, 25 +++, x,) =
exp (Cx)9:(0, 23, 4, *« -, T,). Successively equating exp (Cjx,)¢; =
exp (Ci &, )pi With x; =0 for 7=1,2, ---,n — 1, we find

g = exp (Cx,) exp (Cyr,) -+ -+ exp (C,,)d

where d € R* is constant. As it is well known that the elements of
exp (Cx) are exponential polynomials in z ([2], page 46), it follows
that the components of g are exponential polynomials. Hence f is
an exponential polynomial in C(R*) when U, is finite dimensional.

Other characterizations of exponential polynomials in C(R") are
now given. For C(R), one such is that of the set of all solutions
to all nontrivial linear ordinary differential equations with constant
coefficients. For C(R*) with n > 1, one cannot identify the set of
all exponential polynomials with the set of all solutions to all non-
trivial linear partial differential equations with constant coefficients.
However, a necessary and sufficient condition that f e C(R") be an
exponential polynomial is that there exists # nonzero linear differential
operators L; = L;(D;) with constant coefficients where each L; only
involves the jth partial derivative D; and L;f =0 for j =1,2, ---, n.
A proof of this given by Laird [7], page 816, is reproduced here for
completeness. The necessity of the condition is obvious. Conversely,
if feCWR") and if L,f =0, then f is a finite sum of terms
A(x,y %5y + - -, 2,)x expax,., With L,f =0, L,A =0 and so each A is
a finite sum of terms B(x, x,, +--, z,)xi2exp bx,. Continuing in this
manner, one finds that f is an exponential polynomial.

The following is an extension of the above result.

THEOREM 4. Let f € C(R"™) and let A = (a;;,) be a real nonsingular
n X n real matriz. Then a necessary and sufficient condition that
f be an exponential polynomial is that there exist n monzero poly-
nomials P, P, «--, P,, each of one variable, such that

Pia;D, + a;pDy + -+ + a;,D,)f =0

for =12, m,

Proof. Let u, = >yt by, for k=1,2, «--,n and flx) = gu).
Then

D, f(x) = 3,99 9%

so that
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S ajnDnf = 99
m=1 auj
when B = (b,,) is chosen so that B” = 4. The given condition is
then PyD;)g =0 for j=1,2, .-+, n which is equivalent to ¢ and so
to f being an exponential polynomial.

THEOREM 5. Let a€ R, feCR") and Usla) denote the subspace
in C(R™) obtained from finite linear combinations of terms f(x — ta)
for te R. A mnecessary and sufficient condition that f be an ex-
ponential is that Ugla;) be finite dimensional for n linearly in-
dependent vectors a,, @y, -, a, in R".

Proof. The necessity is easily seen from U (a)C U, for all a € R,
and if f is an exponential polynomial, then U, is finite dimensional.

The converse, which has been recognized by Loewner [8] when
{a,, ay, ++-, a,} is the standard basis, may be shown directly, or as
follows. Let fi(t) = f(ta;) for all te R and j=1,2, ---,n. If each
Us(a;) is finite dimensional in C(R"), then Uy, is finite dimensional
in C(R*). So each f; is an exponential polynomial and there is a
nonzero polynomial P; so that P;D)f; = 0. With Df; = a.grad f,
the conditions of the sufficiency part of Theorem 4 are satisfied.
Hence f is an exponential polynomial in C(R").
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