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We determine the irreducible length of complex trivec-
tors of rank less than or equal to eight. The irreducible
length is invariant under the action induced by the general
linear group on the underlying complex vector space. A clas-
sification under this action is available where representatives
are explicitly given for each equivalence class and it is the
lengths of these representatives which are determined.

In their paper [1], Busemann and Glassco consider the problem
of determining the maximal irreducible length (called length from
now on) N(F, n, r) of r-vectors in A"U where U is an n-dimensional
vector space over the field F. The length of an #-vector is the
number of decomposable summands (blades in J. Schouten’s book
[5] and paper [6]) in a shortest possible representation of that r-vector.
In [1] Busemann and Glassco state that “The values N(C, 7, 3) = 5,
N(C, 8,8) =17, and N(C, 9, 3) = 10 have been claimed but questioned,
see Schouten [3, p. 27] and [1].” The purpose of this paper is to
show that N(C, 8,3) = 5 (and not 7 as claimed) by determining the
lengths of each of the representatives of the Gurevich classification
in [2]. For sake of completeness the lengths of the rank 7 trivectors
are also included. That N(C, 7, 4) = 4 (and not 5) is shown in [7].

Let U be a fixed 8-dimensional vector space over the complex
numbex field and A*U the space of trivectors considered. If Xe A°U
then [X] denotes the intersection of all subspaces W of U for which
XeA##W. Then dim[X] is the rank of X. The letters a,b,¢,q, 7,
s, v, t appearing in the Gurevich classification may be assumed to be
independent vectors in U. Note that in [2] the “4” has been sup-
pressed.

The equivalence classes are as follows.

I: 0

II: [abe]

II1: [agp] + [brp]

Iv: [agr] + [brp] + [epq]
V: [abe] + [pgr]

VI [agp] + [brp] + [csp]

VII: lgrs] + [aqp] + [brp] + [esp]
VIII:  [abc] + [qrs] + [agp]
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IX: [abc] + [grs] + [agqp] + [brp]
X: [abe] + [qrs] + [aqp] + [brp] + [esp]
XI: [brp] + [esp] + [agp] + [ert]

XI1: [qrs] + [brp] + [esp] + [agp] + [crt]

XIII:  [abe] + [qrs] + [agp] + [ert]

XIV:  [abc] + [g7rs] + [agp] + [brp] + [ert]

XV: [abe] + [qrs] + [agp] + [brp] + [esp] + [ert]
XIV:  [agp] + [bst] + [ert]

XVIL:  [agp] + [brp] + [bst] + [ert]

XVIII: [grs] + [agp] + [brp] + [bst] + [ert]

XIX:  [agp] + [brp] + [csp] + [bst] + [ert]

XX: [ars] + [agp] + [brp] + [csp] + [bst] + [crt]
XXI:  [abe] + [grs] + [agp] + [bst] + [crt]

XXII:  [abc] + [grs] + [agp] + [brp] + [bst] + [ert]
XXIII: [abc] + [grs] + [agp] + [brp] + [esp] + [bst] + [ert]

Since rank and length remain constant in an equivalence class
the terms will be used on the equivalence class itself. There are
five equivalence classes of trivectors with rank 7. Three of them,
namely VI, VIII, and IX, have length 3 and the other two, VII and
X, have length 4. There are thirteen equivalence classes with rank
8. Two of them, XVI and XIX have length 3; one of them, XV
has length 5; and the remaining 10 classes have length 4. The results
are proved as follows.

Congider first a trivector X of rank 7. If it has length 3 then
X=X, + X, + X, where each X, is decomposable. If [X,]N[X,]#0
then we may write X, + X, = e, A(x;Axs+2, A2;) Where x,, --+, 2, are
independent vectors in U. Then X, = u A x; A 2, Where u € {x,, - ++, ;)
and %, ---, 2, are independent vectors in U. If w is a multiple of
2, then X has the form VI where p = z,. If w is not a multiple of
x, then by rewriting X, + X, we may assume that v = x,. (For if
% = ax, + Bx, + w where 8 =0 and w € (&, x,, x;y then X, + X, =
LA WANBE — B 'w Az, +a, Awy) and —B87'w A Xy + 2, N\ x; IS
decomposable.) Then X has the form VIII. If [{X,]N[X;]=0 for
all pairs ¢ + j then we may write X + X, = 2, A 2, A %3 + 2, A , A @
and X; = u A v A x;, where u, velwx, +--, % and x,, ---, &, are inde-
pendent. Then u = u, + u,, v = v, + v, Where u,, v, €[X,] and u,, v, €
[X,] so by refactoring X, and X, we may assume that u =, + x,
and v = 2, + ;. Then X has the form XIX which is equal to
[b(c + p)a] + [gr(x + p)] + [(¢ — B)p(a + )] where v, = —b, v, = a, ¥, =
C+HDT=q8=10,0 =8+ D, %= —D)



IRREDUCIBLE LENGTHS OF TRIVECTORS OF RANK SEVEN AND EIGHT 577

Since all possibilities for rank 7 length 38 trivectors have been
considered the remaining classes have length at least 4. Equivalence
class VII then has length 4 and X, which is equal to (Jagp] +
[ + s)(r — e)p] + [(@ + »)be] + [( + ¢)rs]) has length 4 also. This
takes care of the rank 7 trivectors.

Suppose X = X, + X, + X, is a trivector of length 3 and rank 8,
where each X, is decomposable. If [X]N[X,] =0 then X + X, =
2, A (, A\ % + 2, A ;) and for X to have rank 8 it follows that
XN (X]+[X.]) =0. Therefore X has the form x, A (x, Az, +
Xy A %) + x5 A 2, A x5 or XVI in the Gurevich notation. If [X;]N
[X;]1=0 for 1% 7 then X, + X, =2, A 2, A 2, + 2, A\ 2, A\ 2, and
X, = uAx, A\ £y where we{x, --+, %> and x, ---, x; are independent.
By refactoring X, and X, we may assume that v = x, + z, and so
X is of type XIX which is equal to ([agp] + 1/2[(d + ¢)(= + s)(p + )] +
1/2[(6 — ¢)(r — s)(p — t]). This takes care of trivectors of rank 8
and length 3. For each of the remaining equivalence classes except
XV we exhibit a length 4 representation.

Types XI, XIII, and XVII are already in the form advertised.

XII = [(a — s)gp] + [(g — o)(p + 7)s] + [(¢ + s)er] + [brp] .
XIV = [ablc — )] + [(@ — »)(b + @)p] + [rq(p — $)] + [ert] .
XVIII = [(t — 7)bs] + [ert] + [r(p — 8)(b — )] + [(@ — 7)gp] .
XX = [(r + s)t — 7)b] + [(r + s)(r + p)c — Q] + [(@a — r — s)gp]
+ [r(d —¢)(s — p + b)] .
XXI = [(b — r)(c + s)t] + [(@ — Dbe] + [agp] + [rs(g + ©)].
XXII = [(a@ + 7)) + 29)(p — ¢ + 1/2s)] + [er(t — 3b — 2q)]
+ [bs(1/2a + 3/2r + t)] + [0 + g)a + 27)(p — 2¢ + 9)] .

XXIII = [(a@ + 1/25 + 1/27)q(b + ¢ + r — s + 1/2p + 1/2t)]

+ [+ ¢+ 120)(r + 8)(b + ¢ - 1/2p + 1/2t)]

+ la(—1/2b + 1/2¢ + ¢)(—b — ¢ — r + s + 1/2p — 1/2¢)]

+ [ —e)(—1/2a + 1 — s)(—7r + s + 12p — 1/2¢)] .

The only item that remains to be justified is that XV has length
5. We write the representative in the form X = X, + [ert] where
X, = [abe] + [qrs] + [agp] + [brp] + [esp]. We note that X, is of
type X, has rank 7, length 4, from which it follows that X has
length at most 5. We will show that (¢t — ) A X has length at least
4 for all uea,b, ¢, q, 7,8 py. This will complete the proof because
if Y is any rank 8 trivector in AU with length 4 then at least one
of the terms in any representation of Y as a sum of 4 decomposable
trivectors must contain a factor of the form ¢ — w for some wue
{a, b, ¢, q,7,s v, and for this u, the length of (¢t —u) AY is at
most 3.
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Since (t — u) A X =t A (X, + [uer]) — u A X, it is sufficient to
prove that X, + |uer] has length at least 4 for all ue{a,b,c¢,q, 7,
s, p>. Let

U = a0 + ab + ae + aqg + as + ar + ap.

After the substitution

8§—— 8 — Q7 + Qe
b—b + ar

with the other letters remaining unchanged we obtain
X, + [er(ah + a;s)] .

If @, = @; = 0 we have X, which has length 4. If a, = 0 then X, +
[er(asd + as)] = [(@ + ayr)blc — az'p)] + (g + ae)rs] + [a(g+a:'d)p] +
[esp] ~ X, under the substitution

a— a7 a — r)

b — ai®b + ay(c — p)

c——az'e

q— a*q — az'oe

s— a,(s — p)

r—> ;¥

pP—p.
If , =0 and a; == 0 then

X, + afers] = [abe] + [brp] + [s(g + ae)(r — a;'p)]
+[(a + a5's)gp] ~ X,

under the substitution

a4 — —aa
b— —a,b + p)
c—— a;’%
qg— —a; (g + o)
r—> —az;r
s ——ais
P—D.
Lastly, we point out also that N(C, 9, 3) < 9. This follows from

(2.5) of [1] since N(C, 8,8) = 5. The bound 9 is not likely to be the
best one however,
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