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We give two additional conditlons on an approximate
identity (or positive kernel) {K,} which insure that f*K,—f
a.e. if fe ! on the line or circle. Where the convolution
defines a function on the disc or a half-plane, as for the
Poisson kernels or heat kernels, then the theorem gives
automatically the paths toward a boundary point along
which pointwise convergence occurs.

1. Introduction. An approximate identity on the line or the
circle is a family of bounded nonnegative L' functions {K,} such
that SK“ =1 and lim, S K,=1 for all intervals I={x:|x|=0d},0>0.
The convolutions f, = f iK,, of a given function f with the members
of an approximate identity provide approximations which converge
to f in various ways depending on f. For a finite interval, for
example, f,—f uniformly if f is continuous; f,—f in L* if
feLl*1 =p < «); fo—f w*if feL, [3, p.22].

For specific approximate identities (Poisson kernels, heat kernels,
the Fejér kernel) one also has f, — f pointwise almost everywhere.
The proofs of these theorems use additional properties of the
several kernels beyond the very general conditions for an appro-
ximate identity.

To illustrate, the Poisson kernel for the disc is

1 17 .
Pr(a)—?n'—l+'rz~—2frcosf)' Osr<li—z<b=7).
If fe L(—mx, n), let f(r,6) = f,0) = (fxP,)60). Then f(r,60) is har-
monic in |z| <1, and f(r, 0 — f(6) a.e. as r-—1. In fact, one
actually has the following classical theorem on nontangential ap-
proach: f(», 6) — f(0) a.e. as (r,0)— (1, 6) along any nontangential
path.

Our purpose here is to prove a theorem of this form: If felL?
and f, = f+*K,, then f,->f a.e. The hypothesis is that {K,} be an
approximate identity (on the circle or line) with two additional
assumptions. The first of these is simply a smoothness assumption:
K. is continuous, and each K, has a unique maximum, and decreases
monotonically away from this maximum in both directions. The
second extra assumption (condition (e)) limits the distance from the
origin at which K, can have its maximum.

In the applications, condition (e¢) determines which translates of
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a given approximate identity can be added to the family so the
result will still be an approximate identity. For the Poisson kernels,
condition (e) is equivalent to restricting approach to a boundary
point to paths within a Stolz angle. Hence condition (e) is in some
sense “best possible.”

Applied to the heat kernels our theorem gives apparently new
results on the kind of approach toward a boundary point for which
heat convolutions converge to the boundary function a.e.

For the Fejér kernel, “approach to a boundary point” is not a
relevant idea. However, we do obtain information about how the
modulus of continuity of the Cesiro sums of an L' function depend
on n. The same sort of inference can be made for the other
kernels, and is basically what is involved in the results on “non-
perpendicular” approach.

There is nothing novel in the proof of the theorem. What is
new is the isolation of the simple conditions which make all the
standard proofs work, and the fact that translates of an approxi-
mate identity again form an approximate identity when suitably
indexed. It is this last fact which gives the paths toward bound-
ary points along which pointwise convergence takes place.

2. Proof of the theorem. Let {K,} be a net of nonnegative
real functions on X = (— o0, ), or on X =(—mx, w] (the circle). The
index « is an element of a set D with a transitive partial ordering
>. In addition we assume that for every «,, a,€ D, there is a,c D
so that a, > «, and «; > a,. Thus (D, >) is a directed set. We
write a — o to indicate limits as a runs over D; e.g., K. (x,) >0
as a — oo,

The net {K,} is an approximate identity if (a), (b), (¢) below
are satisfied, and we will call {K,} a smooth approximate identity
if in addition (d) and (e) are satisfied.

(a) K,c L' and K, = 0 for all a.

@Sm:uwmm

(e) g _ K, »1as aa— o, for all 6 > 0.

(d) Igi:fs continuous on X. K, increases to a unique maximum
at x,, and decreases for x = x,. For the circle, K, increases from
some minimum value along the two complementary arcs to a uni-
que maximum at z,.

(e) For some constant A, |z, K.(x,) < A for all a.

We will prove the following theorem.

THEOREM 1. If feL' on X and {K.} i1s a smooth approximate
identity, then f=K,(x) — f(x) a.e. as @ — os.
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The proof depends on a number of simple lemmas. Throughout
this section we assume that {K,} is a smooth approximate identity
on X, where X is either the line or the circle. The notation will
be for the case X = (— oo, o).

Lemma 1. gl ] K,—0 as @ — o for all > 0.

Proof. This is immediate from (b) and (c).
LeMMA 2. x,— 0 as @ — oo,

Proof. By (¢), max K, = K, (x,) —  as & > oo, Hence x,--0
by (e).

LEMMA 3. sup{K,(8): |s|=d}—0 as @ c, for all 6 > 0. In
particular, K, (s,) — 0 as a— o for all s, # 0.

Proof. Fix 6 > 0. Then |z,| < é for all sufficiently “large” «,
and sup{K,(s): |s| = 8} is either K,(9) or K, (—0). Suppose the lemma
is false, and to be specific that there are arbitrarily large values
of @« for which K,6) = p > 0. Then there are arbitrarily large
values of a such that |z,] <6/2 and K,0) = p by Lemma 2. For
all such «, S K, = 1/26p, which contradicts Lemma 1.

le|zd/2
The next lemma is relevant only if X = (— o, ),

LEMMA 4. lim,_. K.(s) = 0 for all a.

Proof. This follows from (d) and the fact that K,e L'

LEMMA 5. For all & >0, S K!—0 as a— co.

[EX=4]

Proof. We consider the interval [0, o). The proof for the
other cases is similar. For each «, K.e L' by (d) and Lemma 3,
and

ng; = lim K.(s) — K.(0)= —K.,() .
4 §—00
As ¢ — oo, K (6)— 0.

The next lemma uses condition (e) in an essential way. Condi-
tion (e) determines the paths toward boundary points (i.e., points
z, of X) along which the convolutions f=K, will approach f(x,) a.e.
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LEMMA 6. There s a constant B and a,€D such that
S|xK;<x)| de < B for all @ > a,.

Proof. Fix M >0, and pick a, so that |z, |<M for a > a,.
Now we consider only « > a,, and show that g |xK.(x)|dx < B,

where B is independent of M. Fix «, and assume 0 <z, < M; the
same sort of argument works if —M < x, < 0.

S‘” K ()| da = X" — 2K (z)dz + S“wlﬁ(x)dx _ SMxK’(x)dx
o —ar 0 Ty

- -xKa(x)]o_M + S E(@de
+ xKa(x)]:a - S K (x)dae

— 2K,() ] + S K, (x)dx

S(—M)K(—M) + 2K (x.) — MK (M) + x.K.(x,) + 1
<2 K, (x,) +1<24+1=8B.

LEMMA 7. If fe L', then for almost all =,

(1) lim % - | @ — fanau=o0.

s—r § —

Proof. 1If F(x):SZf(u)du, then F'(x)=f(x) a.e.; i.e., (F(s)—F(x))/
(s — x) — f(x) a.e., which is the same as (1).

COROLLARY. The limit (1) holds whenever f is continuous at .

THEOREM 1. If fel', and {K,} s a smooth approximate
identity, then (f=K,)(x) — f(x) a.e. as & — «o; specifically, the limit
holds for all x for which (1) holds, and so in particular for x
where f 18 continuous.

Proof. Fix z, and let 6 > 0.
FeR@) = f@) = | Ko — 9@ — f@)ds

~ Tk - 97eis - 1@ | Ko — 91s
+ r K (x — 8)f(s)ds — f(x)g K (x — s)ds

|, Ko = 50@ - s + | K@ - (76 — f@)ds
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Let J,, J,, <+, J; be the six integrals above, in the order in which
they occur.

By Lemma 1, J,— 0 and J,— 0 as & — oo,

J, and J; are similar to each other, and we estimate J,:

[i] = Il sup {K.(2): ¢ = 0} .

Hence J,— 0 and J;, -0 as & — o by Lemma 3.

Finally we show that J;— 0 for every x for which (1) holds,
and a similar argument holds for J,.

Let x be a number for which (1) holds, and let

86) = | (7®) — f@)ds ,
so that B(s)/(s — ) — 0 as s—x. Then

Jo= | Ko 5ap06)
= K0)80) — K08 — 9) + || poKi(@ — 9ds .

Observe that B(x) = 0, that B is continuous, and that K,(9) — 0 for
any fixed 6, as @ — . Now we estimate the final integral.

S’ BE)K.(x — 8)ds < § ‘-f?—@—l @ — )KLz — )| ds
2 s lg —

(2) < max l& . Ss|tK,§(t)!dt
. r—d<s<wx S — 0
< B max BE)_ ,
z—-osssz |§ — &

where B is the constant of Lemma 6. Choose é so the right side
of (2) is less than ¢. Then pick @, so that |K, (8B — )] < ¢ if
a > a,. Hence |J;| < 2¢ if a > «a,, and we conclude that J; — 0 as
@ - co,

In all the applications we take as our net {K,} the translates
of some standard approximate identity {L,}. Hence we state the
following simple observation as a lemma.

LEMMA 8. Let {L;} be a smooth approximate identity, and let

Kipo(8) = Ly(s — 1) .

If the indices (B, t) are so ordered that (B,t) — o implies B — oo
and t— 0, then {K,)} satisfies (a), (b), (¢), and (d).

For the applications, we so order the pairs (g, t) that condition
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(e) also holds. The restrictions imposed by (e¢) determine the paths
along which pointwise convergence occurs.

3. Applications. In this section we apply Theorem 1 to the
Poisson kernels for the disc and half-plane, to heat kernels for the
half-plane and the first quadrant, and to the Fejér kernel.

(A) The Poisson kernel for the disc.
Let

E

3 P.(s) =
(3) (®) 2r 1 +7*— 2rcoss

where —7 <s =7m and » <1. The kernels {P,} are a smooth ap-
proximate identity as » — 1 [2, p.102], [3, p. 32]. Let

1 19
Kio(s) = P(s — 0) = — ’
tr,0)(8) (s ) 27 1 + 7 — 27 cos(s — )

Here @ = (r,0) for 0 <r <1 and —7w <60 <x. The a’s are ordered
as follows: fix A and let

(r,0) > @', 0) iff =", 10] = AL — ), |0'| = AQ — 7).

Clearly (r, 6) — o= implies » —~ 1 and 6 — 0, so {K,, } satisfies (a)-(d).
The polar curve 6 = A(1 — r) has limiting slope =4 as »—1.
Hence (7, §) — <> implies that (», ) — (1, 0) between the lines through
(1,0) with slopes +A. If F(r,0)—~L as (r,0)— c, then
lim,_, F(», §) = L and the limit is uniform in 6 for (r, §) within the
given angle at (1,0). This is formally stronger than the usual
statement “F(r, 0) — L along any path to (1,0) within an angle.”
Actually, the two statements are equivalent, and we will write
“(r,0) — (1, 0) in an angle” for (r, ) — oo.

If « =(r,0), then x, of condition (e) is given by 2, = 6, and
condition (e) is satisfied as follows:

|le(w):[_@ 1—2 147 |6]
ST o (1 — ) 2r 1 — 7

IA

A4
=

THEOREM A. If feL'(—m=m, ), then

(4)  frKoa(s) = - g L — 79)f(s)

2rJ-= 1 4+ r* — 2r cos(s, — s — 0)
— f(s,) a.e. as (r,0) —> (1, 0) in an angle.

To get the usual statement, replace s, — 6 by € in the right
side of (4) and let
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Fr,0) = - 1= .
-1 + 7 — 2r cos(d — s)

Then F' is harmonic in the disc and the classical theorem is:

THEOREM A’. If fe L'—m=, ), then for almost all s, F(r,0)—
f(s)) as (r, 0) — (1, s,) within an angle at (1, s,).

To see that condition (e) is an appropriate hypothesis, consider
the function ¢g(z) = exp(z + 1)/(z — 1), with g(1) = 0. By [1, Theorem
3.2], (1) holds for this g at ¢ = 0, since g(r) > 0 as » — 1. Observe
that |g(z)| = exp(—P(r, 0)), where z = r¢*’. On the circle » = cos¥,
P(r, 0) = 1/2x, so |g(z)| is a constant different from g(1) =0. If
f(®) = Reg(e??) and F(r,0) is the Poisson integral of f, then
F(r, ) - f(0) as (r,0) — (1,0) along the tangential path 7 = cos¥,
even though (1) holds for f at 6 = 0.

(B) The Poisson kermel for the half-plane.
Let

5 P =Y _1
(5) 4(8) P

Here —oo < s < o0, and y > 0, and {P,} is an approximate identity
as y — 0 + [3, p.123]. Let

K, ()=Ps—m=Y___1
(z01(8) (8 — @) e P

where —oco < < o and y > 0. Order the pairs (x, y) as follows:
@y>@,y)ify=sy, |z|=Ay, '¢'|=AY.

Hence (x, ¥y) — « means y — 0+ and (x, y) stays between the lines
y=+Ax. We will indicate such a limit by “(z, ¥) — (0,0) in an

angle.”
If @ = (x, y), then x, = x, and condition (e) becomes

| %o | Ko@) = ||

1 _ 1=l
Ty T =

Theorem 1 in this case is

THEOREM B. If fe L'(— o, ), then

. _Y * f(S)
(6) f K(z,y)(SO) T S—“’ y2 + (So -8 — x)2

—f(s,) a.e. as (x,y) — (0,0) in an angle .
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Replace s, — 2 by « in the right side of (6), and let
Fz, y) = lr 1)

Tl y® + (s — @)
Then F' is harmonic in the upper half-plane, and we have:
THEOREM B'. If fe L'(— o, ), then for almost all s,, F(x, y)—
f(s,) as (x, y) — (8, 0) within an angle at (s, 0).

(C) Heat kermel for the upper half-plane.
Let

: 1 et
7 k — 84/4t ,
( ) t(s) ’1/-4_7'[t e
where — o < s < c, and ¢ > 0. The family {k,} is an approximate
identity as £ — 0+ [4, p.31], and k,(s) satisfies the heat equation
0*u/0s* = oufot. Let

K6 =k(s—2x) = e in't gDt

Order the indices (x, t) as follows:
(@, t) > @, t)if t<t, x| S AV, |2 | < AVT .

Then (x,t)—  means t— 0+ and (x,t) lies over the parabola
t = x*/A. We will write “(x, t) — (0, 0) over a parabola” for (x, t)—oo.
If @ = (x, 1), then z, = x, and condition (e) is satisfied as follows:.

|2 | Ko(2) = || < AWV 4r .

1
V 4zt
THEOREM C. If fe& L'(— o, o), then
1 “ —(sg—8—2%)2/4t
e ®0 f(s)ds

Vv 4xt )-
—f(s,) a.e. as (x, t) — (0, 0) over a parabola .

(8) FrKonls) =

Replace s, — x by z on the right side of (8), and let

_1
Vv 4rt

Then F(x, t) satisfies the heat equation in the upper half-plane, and:

Flz, t) = S‘f e~ £()ds |

THEOREM C'. If fe L'(— oo, o), then for almost all s, F(x,t)—
f(8,) as (z, ) — (8, 0) over any parabola t = A(x — s,)%
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(D) The heat kernel for the first quadrant.

For a function f in L't = 0) we want to obtain an extension
f(x, t) which satisfies the heat equation in the first quadrant. Since
Theorem 1 treats a convolution on (— oo, o) rather than (0, ), we
first prove a lemma which puts Theorem 1 in accessible form.

LemMA 9. If {K,} is a smooth approximate identity on (— o,
o), and K,=0 on (—oo,b,), and fe L0, N) for every N, then

(9) g:—baKa(x — §)f(8)ds —> F@) ave. as @ — oo .

Proof. Extend f to the whole line by letting f = 0 on (— <, 0).
Then for x = b,,

rok@ = " K - 9f6)ds
=Ko — )/ s

As @ — o, limsupbd, <0 by Lemma 2. Hence (9) holds for almost
all z in (0, ).
For x > 0, the kernel h, is defined as follows:

1 X - 2/4, :
—_— T g7® if s>0
(10) ha(s) = {V 4m "
0 if s<0.
The function h,(s) satisfies the heat equation 0*u/ox* = 0u/os every-

where except (0, 0) [4, p.16]. For fixed 2> 0, h,(s) =0 for s <0,
and h, has a unique maximum at s = 2?/6. The maximum value is

ho(a[6) = 1/—{17 (6/e>wg—j;— :

The functions {h,} form an approximate identity as x— 0+ [4, p.
71]. Let

1 €x —22/4(8— .
_..___=______ez/‘(' t) lf 3>t
Kio(8) = ho(s — t) = {V 4x (s — 1)**
0 if s=t¢t.
Note that K,.;,, =0 on (— o, t), so the b, of Lemma 9 is: b, = t.

Order the points (x, t) of the right half-plane as follows: fix B> 0,
and let

x,t)y>@,thif e <a, [t|] Bs?, |t'| < B .
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Hence (z,t) — o iff # -~ 0+ and (z,t) lies in the right half-plane
between the parabolas ¢ = + Bx?.

The function K, , has its unique maximum where s — t = 2?/6.
Hence for a = (v, ), x, = t + 2*/6, and the left side of the condition
(e) becomes

1 6\ 1
11 Ly Ka a) — t > 6 —_— | — — .
) o] Kol = [t + 6] 2= (2)" 1
If t = — 2%/6, then (11) becomes, with ¢ = (6/e)**/V 4x,

t 1 1
=¢lL + L)< =
|2, | K (2, c(gc2 + 6>_0<B+ 6).
If ¢t <— 2%/6, then (11) becomes

2] K (@) = "<“f2 - %) < ¢B.

Hence (e) holds with constant

_ 1y_ 1 (8y*(p. 1
A=c(B+ 6>_1/E<e) (B+ 6).
THEOREM D. If fe L'0, N) for every N, then for almost all s,,

1 x
V4r (s, — s — t)*?
—f(s,) as (x, t) — (0, 0) between parabolas .

e—x2/4(so~s—t)f(s)ds

f oK) ="

Now replace s, — ¢ by ¢, and let

T T ¢ s

Then F(x, t) satisfies the heat equation for = > 0,¢ >0, and (cf.
[4, p.78)]):

THEOREM D'. If fe L'0, N) for any N, then for almost all s,,
F(x, t) — f(s,) as (x, t) — (0, s,) between any parabolas t = s, == Bx®.

F(x,t) =

(E) The Fejér kernel.
The Fejér kernel is defined by

1 sin (%) i

P O e %) if s£0

n if s=0.
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The family {L,} is smooth approximate identity on [—=, #] and
f+L, = 0,, the nth Cesiaro sum of the Fourier series for f [2,

p.79], [3, p.17]. We let K, . (s) = L.(s — ), and order the pairs
(n, 2) as follows:

(n,e) >,z if nzn, njzg|A 0| <A.

Then (n, ) — o> means n — o and || £ A/n. The unique maximum
of K, . is K (&) = n, so condition (e) reads

IxaI-Ka(wa) = |93f-'n §A .

Hence {K,..,} is a smooth approximate identity and

THEOREM E. If fe LY(—m, «), then
0.(8 — ) = f+K(s,.)(8) — f(s,) a.e. as m— oo,

uniformly in x iof (x| < A/n.

Let s, be a point where the limit above exists, and let ¢ > 0.
Then there is N so that [o,(s, — %) — 0.(s) <e if =N and
lz] < 1/n. Hence we have an estimate of the modulus of continuity
of o,, for large », and this estimate does not depend on f, so long
as (1) holds at the point in question.

The kind of continuity statement made above for the Cesiro
sums can be made for convolutions with any smooth approximate
identity. For example, let f,.(0) = (f+P,)(0) where P, is the Poisson
kernel. For ¢ > 0, there is », so that |f.(s,) — f.(s, + @)| < ¢ for all
r=7. and all § such that 6 £ AQ — ). We have an explicit es-
timate of how the continuity of f. at s, depends on ». The es-
timate is independent of f, so long as (1) holds at s,.
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