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The principle result is a general Tauberian theorem that
can be applied to any regular real matrix summability method.
The Tauberian condition is determined by the lengths of the
blocks of consecutive terms that dominate the rows of the
matrix. This theorem and its variants are then used to give
a unified method of proving some of the classical Tauberian
theorems for the methods of Abel, Borel, and Euler-Knopp.
The general technique is also used to prove new Tauberian
theorems for Nδrlund and Taylor matrices.

1* Introduction* Let A be the matrix summability method that
maps the sequence x into the sequence Ax, whose nth term is given
by {Ax)n = Σ?=o ank%k Let Δx denote the sequence of differences:
(Δx)n — xn — xn+1. In this paper we shall study order-type Tauberian
theorems in which the convergence of Ax together with a hypothesis
such as (Ax)n — o(dn) implies the convergence of x.

From each row of A that is in l\ we can choose a block of
consecutive terms whose total dominates the row sum. In order to
state this precisely, let us introduce some notation and terminology.
For each n, let Bn = {&: μ{n) < k <; v(n)}, where μ and v are nonnega-
tive integer sequences satisfying μ(n + 1) < v(n). Note that every
integer greater than μ(0) belongs to at least one block Bn. Let Ln

denote the length of Bn1 i.e., Ln — v(n) — μ(ri). We shall say that
the matrix A is {.BJ-dominated if

1 > 0 .(1) liminfJlΣ a
I I ke Bn

The main result of this paper asserts that if A is {Bn}-dominated,
then maXfces, I (Λ%)k I = o{L~x) is a Tauberian condition for A over the
bounded sequences; if A is rowfinite, then a similar assertion holds
without the assumption that x is bounded. The strength of this result
lies not in its precision, but rather in its generality. It is easy to
see that if lim infn | ΣJ = 0 ank \ > 0 and each row is in I1, then A admits
a block sequence that satisfies (1). In case A is regular, the sequence
{Bn} can be chosen satisfying (1) and limnμ(n) = co. This helps us
to define {Bn} so that Ln does not increase too rapidly, thus obtaining
a larger order estimate in the Tauberian condition. In § 3 the dominant
blocks concept is used as a unified approach to proving some classical
Tauberian theorems for the methods of Abel, Borel, and Euler-Knopp.
In the final section, new Tauberian theorems are proved for Norlund
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and Taylor matrices.

2* General Tauberian theorems* The method of proof to be
used here is suggested by an argument employed by Agnew [1] and
Rado [8]. These authors considered matrices A in which each row
was dominated by a single term, and their conclusions were that A
is Mercerian, i.e., A is equivalent to ordinary convergence. In case
A is {f>J-dominated, we can use the slow oscillation of x to make the
terms of these dominant blocks coincide with xks whose values are
all nearly equal to some limit point a. Then Σ?=o ankxk will approxi-
mate a multiple of a, and in this way the convergence of Ax prevents
x from oscillating between two or more limit points.

THEOREM 1. Suppose that A is a regular real matrix that is
{B^-dominated) if x is a bounded sequence such that Ax is convergent
and

( 2 )

then x is convergent.

max I (Δx)k | = o(

Proof. We may assume that x is a real number sequence. We
suppose that x is nonconvergent, and we shall show that no real
number r can be the limit of Ax. Let R denote the positive number
lim sup*, I xk — r \. Using the well-known Silverman-Toplitz conditions,
we can write

(Ax)n - r = o(l) ank(xk - r) .

Suppose 0 < ε < R, and choose K such that k Ξ> K implies | xk — r \ <
R + ε. Then

V a (r — rΊ
keβn

/ i ^nkv^k ' /
keBn

y i ank{xk r)
keBn

k e Ii~

α»* • xjc — r |

\Γ~1 1 I I 1

k ̂  /ί

- (Λ + e) t Σ

-Λ Σ *

α»fcl

- ε| | A

where \\A\\ =
Next we assert that for infinitely many %,

( 3 ) keBn implies | xk — r \ > R — e .
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This is established by first choosing N so that Ln max i e S w | (Δx)i | < ε/2
whenever n> N; then select some n greater than N for which Bn

contains an integer j satisfying | xά — r | > R — ε/2. For any k in Bn,
we have | xk — % | ^ L% max i6ΰ l } | (Λcc)* I < ε/2, so by the triangle in-
equality it follows that | xk — r | > R — ε. Also, we note that all the
numbers {xk — r}keBn have the same sign.

For any of the infinitely many n as established in the preceding
paragraph, we have

{Ax)n - r I ̂  o(l) + (R - ε)

-elWA

Σκ«

Σ
keS,

R{

1Σ - ε | | A | ί

a>*k\\ + K\\ 2 J (ink

<Σ

V I π

}.
Since ε is an arbitrarily small positive number, it follows from (1)
that lim inf% | (Ax)n — r \ > 0. Therefore, Ax cannot have limit r,
whence Ax is nonconvergent.

The proof of Theorem 1 can be applied to sequences that satisfy
a gap condition, say (Δx)h — 0, if k Φ ιc(m) where m — 0, 1, 2, ,
instead of an order type Tauberian condition. In order to ensure that
(3) holds we must assume that the block B% is contained in a single
gap, i.e., fc(m) <: μ{n) < v(n) ^ ιc(m + 1), for some m. The remainder
of the proof can be used verbatim to yield the following general gap
theorem. (Cf. [6, Theorem 1].)

COROLLARY 1. Let A he a regular real matrix that is {Bn}-
dominated and let x be a bounded gap sequence such that (Δx)n — 0
ifkφ ιc(m), m = 0, 1, . // {Bn} and tc satisfy κ(m) ^ μin) < v(n) ^
fc(m + 1) for infinitely many n, then Ax and x either both converge
or both diverge.

Although the assumption that x is bounded places a considerable
restriction on Theorem 1, we see by the following example that it is
a necessary hypothesis. Let A be the matrix given by

( 3/2 , if k = n ,

ank = -1/2, if k = n\

0 , otherwise .

It is clear that a dominant block sequence is {Bn} = {n}; thus μ(n) =
n — 1, v{n) — n, and Ln = 1. Therefore, the Tauberian condition (2)
reduces to (Δx)n = o(l). Consider the unbounded sequence x: xn = log^,
if n > 0. Then limΛ (Δx)n = 0, and (Ax)n = 0, if n > 0, but obviously
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x is not convergent.
In order to prove a result similar to Theorem 1 in which the

hypothesis that x is bounded is not necessary, we shall assume that
A is row finite and terms to the right of the dominant blocks are
zero. The argument is an adaptation of the idea used by Agnew in
[1, §2].

THEOREM 2. Suppose A is a regular real matrix that is {Bn}-
dominated and a%k = 0 whenever k > v(ri)\ if x is a sequence such
that Ax is convergent and max/cej5ίί | (Δx)k \ = o(L~ι), then x is convergent.

Proof, Again, we assume that x is real, and we suppose that x
is nonconvergent; by virtue of Theorem 1, we need to consider only
the case where x is unbounded. Let H and ε be arbitrary positive
numbers, and choose N such that n> N implies that Ln max/cfc e βn | (Δx)k \ <
ε. Since x is unbounded, we can select n greater than N for which
Bn contains an integer p such that ] xp | > max K ί ) {| xk |, H). We also
have max/c6ΰ j { | xk — xp | < ε, which implies that for all k in Bn, \ xk >
\Xp\ — ε and all {xk}kQB.n have the same sign. For such an n we have

(Ax)n Σ
Ic e Bn

- Σ

Σ
Ic e Bm,

ankxk I

J
> (I χP I - ε)

^ j Σ ank - Σ | α n Λ | W - e | | A | | .

Since H and ε are arbitrary, it follows from (1) that lim sup% | (Ax)n j =
c^. Hence, Ax is nonconvergent.

As above, this theorem gives rise to a gap theorem, which we
state next.

COROLLARY 2. Let A be a regular real matrix that is {Bn}-
doTiiinated so that ank = 0 whenever k > v{n), and let x be a gap
sequence such that (Δx)n = 0 if k Φ /τ(m), m = 0, 1, . If {Bn} and
fc satisfy /c(m) <g μ(n) < v(ri) ^ κ(m + 1) for infinitely many n, then
Ax and x either both converge or both diverge.

In order to apply Theorems 1 and 2 to particular classes of
matrices, it will be helpful if we first make some observations and
remarks establishing some relationships between the Tauberian con-
dition (2) and the more customary order estimates (Δx)k = o(dk) or
O(dk). Suppose that (Δx)k = o(dk), where d is a nonincreasing sequence.
Define rn = m a x ^ | (Δx)k/dk I, so limΛ rn = 0 and
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( 4 ) Ln m a x | (Δx)k \ £ Lndμ{n)rμ[n) .

For a particular matrix, if we can construct the blocks {Bn} so that
Lndμ{n) = 0(1), then we can infer from (4) that (2) holds. These
remarks and similar observations based on (Δx)k — 0(dk) can be sum-
marized formally as follows:

LEMMA 1. // (Δx)k •== o(dk)f where d is nonincreasing, and A is
{B^-dominated so that lim% μ(n) = co and Lndμ{n) — 0(1), then (2) holds.

LEMMA 2. // {Δx)k — 0(dk), where d is nonincreasing, and A is
{B^-dominated so that limw μ(n) = oo and Lndμ{n) = o(l), then (2) holds.

These lemmas provide some insight into the relationship between
o- and O-Tauberian conditions as well as the relative difficulty of
working with the weaker O-condition. For example, if dk = AT1, as
in Tauber's original theorem [9], then Lndμ(n) — {v(n) — μ(n)}/μ(ri),
which yields the implications

(5) (Δx)k = oik-1) and v(n) = 0(μ(n)) imply (2)

and

( 6 ) (Δx)k = Oik'1) and v{n) ~ μ(n) imply (2) .

For a given matrix, it is obviously easier to construct {Bn} so that
v{n) = 0(μ(n)) rather than v(n) ~ μ(n). Indeed, for the Cesaro matrix
of order 1, it is impossible for {Bn} to satisfy both (1) and v(n) ~
μ(n); but if we choose μ(n) = [n/Z] and v(ri) = n, then {Bn} satisfies
(1) and v(n) = 0(μ(n)). The resulting o-Tauberian theorem will be
proved in the next section for Cesaro matrices Cj of all positive orders;
our purpose in citing the Cx case at this time is to demonstrate the
fact that the general dominant block theory does not yield O-theorems.
We must conclude, as did Lorentz [5, p. 228], that "these O-Tauberian
theorems are connected with much more delicate properties of the
matrix" than those made use of in Theorems 1 and 2.

3* Applications to known Tauberian theorems* In this section
we demonstrate how the block Tauberian results can be applied to
some classical summability methods to derive well-known o-Tauberian
theorems. (See e.g., [2] and [7].) First we consider the Cesaro matrix
of order j9 where j is a positive integer, which is the lower triangular
matrix given by

ά{n, k) = ί .
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THEOREM 3. If the sequence x is Crsummable for some j > 0 and
{Δx)k = o{k~1)t then x is convergent.

Proof. In order to apply Theorem 2, we must determine μ and
v so that (1) holds. First define v(n) =• n. If 1/2 < β < 1, we wish
to define μ = μ(n) so that Σ*=^+i Cy(% &) ^ β By manipulating bi-
nomial coefficients, we find that

n

Therefore, we want to have μ <; — 1 + (w + 1)(1 — /3iyi)> which is
achieved by defining μ(n) — [n(l — /S1 '̂)]* where [t] denotes the greatest
integer not exceeding t. Since v(n) = O(μ(n)), property (5) guarantees
that (2) holds. Hence, by Theorem 2, (Δx)k = o(&~1) is a Tauberian
condition for Cj.

We remark that the preceding theorem applies to nonintegral j
as well, because Cj includes Cr whenever 0 < r < j .

Next we turn our attention to Abel summability, which assigns
to a sequence x the limit value limt^-{(1 — t) ΣE=o *̂**} Since the
dominant blocks technique is designed for matrix methods, we replace
the continuous parameter t with a sequence {tj such that 0 < tn < 1
and lim% ί» = 1. Thus the Abel limit of x is equal to lim% (Ax)n, where
A is the matrix given by ank = (1 — ίn)*ί It is clear that this Abel
matrix method includes the continuous Abel method, so it also includes
Cj for every j > —1. The constraint is that A is not row finite, and
therefore, the Tauberian theorem that we can prove by using Theorem
1 will not apply to unbounded sequences.

THEOREM 4. If x is a bounded sequence that is summable by a
regular Abel matrix and (Δx)k = o(k~ι), then x is convergent.

Proof. Suppose ε > 0. Since ΣSU^+i ank = ti+μ - ti+% we first
choose μ(n) as large as possible while still satisfying t]tμm ^ 1/2 + 2ε,
say μ(n) = [log (1/2 + 2ε)/logtn]. Then choose v(n) to be the least
integer that is not less than logε/logί%. This yields

so (1) holds. Also

v(ri) logs
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so v(n) == O(μ(n)), and by property (5), we see that (2) holds. Hence,
the assertion follows from Theorem 1.

As another application of Theorem 1, we shall give new proofs
of the classical Tauberian theorems for the summability methods of
Borel and Euler-Knopp. (See [2] and [3].) As above, we replace the
continuous variable with a discrete one and work with the Borel
matrix B [7, p. 56], which is given by bnk = e~nnk/h\. The matrix B
includes the Borel exponential method, so the next result also applies
to the latter method.

THEOREM 5. If x is a bounded sequence that is summable by the
Borel matrix and {Δx)k = o(k~1/2), then x is convergent.

Proof. It is sufficient to determine μ and v satisfying (1) and
{v(n) - μ(ri)}{μ(ri)}-1/2 = 0(1); from this, Lemma 1 will imply that (2)
holds, and Theorem 1 then yields the conclusion. To simplify nota-
tion, let uk = nk/k\. By a simple induction argument, one verifies
that if 0 <L i <; μ < n, then uμ_i < (μ/nYuμ. Thus

, < ± (£
n — μ

and therefore,

Â 7 / e~*nuu ^ n
*=o n — μ {n — μ)Λ/2πn

It follows that Σί=o bnk £ a < 1/4, if μ is defined by

The selection of v is made from a similar calculation: if [i > 0 and
v > n, then uv+i < {n\v)luv1 which yields

k>» v — n

and

n

As before, we want the sum to be no greater than a, so we define
v(ri) to be the least integer that is not exceeded by

2πa2
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It is now easy to see that {v(n) — μ(n)}{μ{n)}~ιn = 0(1), and Σ*keπn bnk ^
1 — 2a > 1/2, for every n, so the proof is complete.

Since the matrix B includes the Borel exponential method, which
in turn includes the Euler-Knopp means [2, p. 183], the next result
follows immediately from Theorem 5.

THEOREM 6. If x is a bounded sequence that is summable by a
regular Euler-Knopp matrix and (Δx)k — o(k~1/2), then x is convergent.

4* Tauberian theorems for Norlund and Taylor means. In
the final section we shall apply the dominant block technique to prove
some new Tauberian theorems for several well-known matrix methods.
We first obtain a simple theorem for the Norlund means Np, which
are given by

\P«-k/P« , if k ^ n ,
0 , if k > n ,Np(n,

where p is a nonnegative sequence such that p0 > 0, and Pn = Σ?=o Pi

THEOREM 7. If the sequence x is summable by Np, where p is in
I1, and (Δx)k — o(l), then x is convergent.

Proof. For such p, Np is regular since lim% pJPn = 0. Let M
be the least positive integer such that PM ^ (2/3) ΣΓ=0 Pi- If v(n) = ^
and μ(n) = max {0, n — M — 1}, then Np is {J?w}-dominated and Ln ^
M + 1 for every n. Thus (Δx)k — o(l) implies (2); so by Theorem 2,
(Ax)k = o(l) is a Tauberian condition for Np.

We remark that (Δx)k = o(l) is a Tauberian condition for any
matrix that can be block dominated with Ln bounded. In particular,
if all the nonzero entries of A lie on a finite number of diagonals,
then (Δx)k = o(l) is a Tauberian condition for A.

In [4] Iyengar stated the following theorem, which was first
proved by Varshney [10].

THEOREM 8. Let p be a positive sequence such that {pn+ι/pn} in-
creases to 1 and Pn —> °°. If x is summable by Np and (Δx)k — O{M~ι),
where M — M(n) is a positive integer defined by PM <Ξ βPn < Pn+1, for
some β in (0, 1), then x is convergent.

The next result that we shall prove is similar to Iyengar's
theorem. Although we must assume a stronger Tauberian condition,
the theorem covers a larger class of Norlund means.

THEOREM 9. Let p be a nonincreasing sequence and suppose 1/2 <
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β < 1. If x is summable by Np and (Λx)n = oiM"1), where M = M(n)
is the least integer such that PM ̂ > βPn, then x is convergent.

Proof. Define v(ri) = n and μ(ri) — n — M — 1. Then

Σ N,(n, k) = Pή1 Σ Pi έ β ,
keβ% i=Q

and Ln = M + 1. It is not difficult to verify that Mis nonincreasing
and limw μ(w) = co. Therefore, we shall be able to apply Lemma 1
using dk — M(k)~\ provided that LnM(μ)~ι — 0(1). To prove that this
boundedness holds, we first note that because p is nonincreasing,
M(k)/k is also nonincreasing. Therefore,

M(n)/n. n < n_ = U __ ( M(n) _ JL_
nM(μ) M(μ)/μ μ μ I \ n n

for sufficiently large n. The fact that M(n)/n is nonincreasing implies
that limsup%{M(w)/w}<l, which establishes the boundedness of LJM(μ).
Therefore, Lemma 1 guarantees that (2) holds, so Theorem 2 may be
applied to complete the proof.

Finally we shall apply Theorem 1 to the Taylor means to get a
Tauberian theorem of the usual order type. Recall that the Taylor
matrix [7, p. 60] of order r is given by

if )rk-n(l -r)n+1 , if k ^ n ,
ink = j \ n J

0 , if k < n .

Note that if \r\ < 1, then the row sums of Tr are identically equal

1 because (1 - r)~n~ι = ΣMS ( Jto

THEOREM 10. // 0 < r < 1/2 α d̂l α? is α bounded sequence such
that Trx is convergent and (Δx)k = o{k~ι), then x is convergent.

Proof. Since Γr is an upper triangular matrix, we define μ(n) = ?ι
and wish to define v = v(w) so that

(7) limsup^Σ^fe ^ α <l/2 .

In order to get a convenient estimate for Σfc>v*«*> we consider the
MacLaurin series for the function

/(r) - (1 ~ r)—ι - Σ f & W = Σ (

Thus Σ Λ > V twJfc is (1 — ? )w+1 times the remainder term Rv-n(r) of the
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last series. By straightforward calculation the Lagrange form of this
remainder is found to be

' v'

where 0 < ξu__m < r. Since (1 — ξv-n)~*~ι < (1 — r)-1"1, we have

which yields

Σί.i = (l-rrfi,-(r)

(8)

where p = r(l — r)" 1. Note that |0 < 1 because r < 1/2. Suppose that
y(w) == en, where c is a positive integer to be specified below. Using
Stirling's formula, we find that

(en) I (cn)cn f c | 1 / 2

/ (en — n)\n\ (en — n)cn~nnn \2πn(c — 1)J

so

\ ( Ωrc/(c-l)Λcn-n ί Ί 1/2

\Pv~n \ \ \9) [ \Pv~n ~ \— \ 1
n) i c - l J \2πn(c - 1 )

Combining (8) and (9), we see that (7) will hold if

(10) •&—— < 1 ,

c — 1

which is equivalent to

(11) p < c1/(1-c) - ccni-c) .

It is an elementary exercise to show that the right-hand member of
(11) approaches 1 as c —> oo. Since p < 1, we can choose c sufficiently
large to guarantee that (10) holds. Hence, (7) is satisfied by the
definition v(n) = en. Also, (Δx)k — o(k~1) by hypothesis, so we infer
from (5) that (2) holds. Therefore, the hypotheses of Theorem 1 are
satisfied, so we conclude that x is convergent.
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