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We study a class of analytic functions which unifies a
number of classes previously studied, including functions
with boundary rotation at most X%z, functions convex of
order p and the Robertson functions, i.e., functions f for
which zf’ is a-spirallike. We obtain representation theorems
for this general class, and using a simple variational for-
mula, also obtain sharp bounds on the modulus of the
second coefficient of the series expansion of these functions.
Using a univalence criterion due to Ahlfors, we determine
a condition on the parameters %, a, and p which will ensure
that a function in this class is univalent. This result im-
proves previously published results for various subclasses
and is sharp for the class of functions f for which 2zf” is
a-gspirallike of order p.

1. Let PX(p) denote the class of regular functions p(z) in E =
{2:12] < 1} such that p(0) = 1 and

gz:‘ Re {e™*p(2)-p cos a} df £ krcosa ,
1—p -

E=2,0<p<l,areal, || <7/2, z=1e¥ 0 Zr < 1.
Let VX(o) denote the class of functions regular in E with
f(0) = f(0) —1=0 and

") . pr
1+ ) Py,

k, &, and p as above. V/(0) is the class of functions with bounded
boundary rotation. VX0) is a generalization of this class which
has been studied recently ([7] and [13]). Padmanabhan and
Parvatham [9] have studied properties of V(o). In this paper we
study properties of Vi (o) which unlike V(o) contains functions
whose boundary rotation is not necessarily bounded. A function f
belongs to V(o) if and only if

Re -‘lei“[}—if-z,{z,—),—(—z—)—]} > pcosa,

© and « as above. When o =0, we obtain the class of functions
f(z) for which zf’(z) is a-spirallike, which has been studied by M.S.
Robertson [10], Libera and Ziegler [6], Bajpai and Mehrok [2], and
Kulshrestha [5]. The case when k=2 but p and a are not zero
has been studied by Chichra [4] who denoted the class F¢. This
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class also has been studied by Sizuk [12], who has called zf'(z) a-
spiral-shaped of order p. The class V(o) is the class of functions
which are convex of order p, introduced by M. S. Robertson in
1936.

LEMMA 1. If p(z) € PXp), then

(1L.1) ep(z) = COS & S 1+ (1 — 202" 7,6y & isine,
2r  Jo 2 — ze'

where ¥(0) 1s a function with bounded variation in [0, 27] satisfy-
ing

(1.2) S:"dw(e) — 27 and S] dy(0)| < k.

Proof. Let

g(z) = & p(z) — pcosa — isina
1—p)cosa

’

and let

u(z) = Re {g()} = Re i v (f(i)‘;;g)zc;sa } )

Then since p(z) € Pk(p), Szz|u(re”)]d0 < kr, and according to a repre-
0
sentation theorem due to Paatero [8],

eiap(z)——pcosa—isina: IS 1+ze d(6)

(1 — p)ecosa 2rdo 1 — ’
where () has bounded variation and satisfies condition (1.2) above.
The conclusion of the lemma follows.

Now let f(z)e VX(p). By a theorem due to Padmanabhan and
Parvatham [9], the integral in (1.1)
_1_8” 1+ (1 — 2p)ze"
27 Jo 1 — ze"

dy(0) = 1 + 2f)"(2)/fi(2) ,

for some f, in V(). So

o 2f"(2) | _ zfo"(Z)
e \:1 + ) = cos a[ :\ +isina .

SR _ i« ) (2) e @sina — 1
KON cosa 2+ @) ]+ .

Integrating, we obtain
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LEMMA 2. f(2) is in VXP) if and only if there is a function
fz) in VEo) such that
£1(2) = [F] e .
The function f,(z) in V(o) has associated with it a function g,(z)
an VEO0). (9], Lemma 2.)
LEMMA 3. f(2) is in Vi(0) iof and only if there is a function
g,(z) in V§(0) such that
F1@) = [giay)e-rememse
LeMMA 4. f(z) is in Vi(0) if and only if there exists a func-
tion g(z) in VEO) such that
f'@) = [g'(®]“ .

Proof. The function [gi(2)]* **<** determines a function g¢/(2),
where g.(z) is in V[(0) [7].

From Paatero’s representation theorem for functions with
bounded variation [8], we obtain the following representation.

THEOREM 1. f(z) is in Vi) if and only if there exists a func-
tion (6) with bounded variation on [0, 27] satisfying condition (1.2)
and

f'(z) = exp { —d - p7):‘i“ cos & g:‘ log (1 — ze”’)da/f(ﬂ)} .

THEOREM 2. f(z) is im VE(0) if and only if
(A) there exist starlike functions S, S, such that

[Sl(Z)](k+2)/4 (1—p)e™i% cosa
, z
f(z) = W

K

(B) there exist a-spiral functions T,, T, such that

T(2) A1 1—p
) = %Zz—;_j%w_zm

2

(C) there exist functions L,, L, in VO0) such that
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‘ [LI(z)](k+2)/4 } (l—p}e‘ia ¢OS @

flz) = | [L(2)] 7

(D) there exist functions H,, H, in V(p) such that

[H{(z)]"“’z”“ } e~ 1% cos

f’(z) - {[H;(z)](lrzw

Proof. (A) follows from Lemma 3 and Brannan’s representation
for functions with bounded boundary rotation [3]. (B) follows from
(A) since s(z) is starlike if and only if T(z) = z[s(z)/z]" “*** is a-
spirallike. (C) follows from (A) because of the fact that H(z) is
convex if and only if zH'(z) = S(z) is starlike. (D) follows trivially
from (C).

2. Properties of functions in VJi(p).

COROLLARY 1. Suppose f(z) = z + a,z* + --- is in VEHp). Then
i, < k(1 — po)cos /2, and this bound is sharp.

Proof. It is well known that if ¢, is in V¥#0), then |g)(0)| =
k, so the result follows directly from Lemma 3. This bound is
sharp for the function f(z) in V(o) defined by

. _fa - z) kD (1=ple”i%cos @
f <z) - {[(1 4 z)(k»«»z)/z }

LEMMA 5. If f(z) is in Vi(0), then F(z) defined by
v 2+ a
! < 1+ az >
Sy + G- e it cosa

is also in Vi(0)-

F'(z) = , F(0)=0, la) <1, 2] <1,

Proof. By Lemma 2, for f(z) in VF(p), there exists f(z) in
Vi) such that f'(z) = [f, ()] "***. By Lemma 3 in [9],

()

Fa)T + a2y

a function in V(o). Hence

is the derivative of

#({ 1) - EE)
fol(a)(l =+ dz)z”“’” f’(a)(l + a‘z)i(lﬁt»)ra"i“cosa
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is the derivative of a function in VZ(o).

THEOREM 3. If f(z) is in Vi) and 0 <k — p)cosa <1,
then f(z) is univalent in |2| < 1.

Proof. By the previous lemma, if f(z) is in VZ#(p), then F(z)
defined by

p(rta
F'(z) = <1+‘”?. , F(0)=0,
f’(a)(l + d-z)zu—p)e 1A cos a

is in VS(p) also, with |a| <1 and |2| < 1. Then

FII(z) — [(1 + az)%l"ﬁ)e"’i" cosafll ( lz :;z ) . (]i- :— [;z!)Z

— 2(1 _ p>e~ia CoS a(l + a—z)zu—p)e"i"cosaﬂ(-ifr( z +_a >:l
1+ az

% [f’(a)(l + d-z)ui—p)e“i“cosa]—x ,
Fro)= L@ 1 jap) — 201 — p)e“cosa a.
f(a)
Replacing a by z, using Corollary 1 of Theorem 2, and multiplying
through by |z|, we have

zj::;(z? 1 —[2) —2(1 — p)e“cos a|z[*

=k(l—-pcosajz|<k(l—pcosa.

Ahlfors’ univalence criterion [1], with ¢ = 2(1 — p)e™**cos @, shows
that f is univalent in £ when 0 < k(1 — p)cosa < 1.

COROLLARY 1. If f(2) is in VXO0), f is univalent in E when-
ever

2.1) O0<cosa=xllk.

This simplifies and improves bounds previously published for this
class [7].

COROLLARY 2. If f(z) is in V), then f is univalent in E
for

k-1
. = .
(2.2) = —
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Previously, it was shown in [9] that f is wunivalent for p =
k + L)/ + 2).

COROLLARY 3. If f(2) is in Vi(0), then f(z) is univalent in E
when 0 < cosa < 1/2(1 — p). f need not be univalent if cosea > 1/

[2(1 — 0)].

Chichra [4] has shown that for each «, 1/[2(1 — p)] < cosa < 1,
there exists a function f(z) in F{ = Vo) such that f(z) is not
univalent in . Hence the problem of univalence in V(o) is solved.

3. We may use the same function f as in [4] to study condi-
tions on %, @, and p which will allow functions in V(o) to be non-
univalent. Let

(3.1) o(2) = %{(1 — 2 —1],

and note

v 1
g(z)————(l__z)/z+1.

g'(z) has the form given in Theorem 2C, with Li;(z) = (1 —2)™* and
Lyz) =1 and
(3.2) p+1l=e"cosall —p)k + 2)/4.

Hence ¢g(z) is in V(o) and, from an earlier result due to Royster
[11], will not be univalent in 2| <1 when |g# +1|>1 and |¢ — 1|
> 1. The first condition requires that

(3.3) cosa(l — o)k +2)/4>1,

while the second condition simplifies to

3.4)  costa(l — o)k + 2)[ (@ — f’ié’“ +2) _ 1] > 3.

We may use these conditions to analyze the nonunivalence of func-
tions in subclasses of VJ)(p) which have been previously studied.
When p = 0, the conditions defined by (2.1), (3.3) and (3.4) appear
in Fig. 1. All functions in VZ}(0) with % and a corresponding to
points in region 1 are univalent, by (2.1). In region 3, (k+2)cos ¢/
4 >1 and condition (8.4) is satisfied for all £ > 6 when 0 <cosa
<1V'3/2; for 1/3/2 <cosa <1, (8.4) is equivalent to k> 6 — 4[4
cos’ @ — 3]?/cos @. When g¢g(z) defined by (3.1) is chosen so as to
correspond with points in region 3, it will not be univalent. When
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Ik and « correspond to points in region 2, it is an open question
whether such f in V/}(0) will be univalent.

Fig. 2 is the corresponding diagram for univalence in the class
V(o). Region 1 depicts inequality (2.2), and all functions g defined
by (3.1) with k, p satisfying (3.2) for @ = 0 are univalent in [z]|<1.
Conditions (3.8) and (8.4) require that o < (k — 10)/(k + 2), and for
these values of o and k& (in region 3), g(2) will not be univalent.
Region 2 shows those values of & and p for which the univalency
of functions in V{(p) is an open question. We note that when
I = 2, the equation (8.1) defines the function used by Chichra in
showing that there exist functions f in F/ = Vo) where f is not
univalent in {z| < 1, for 1/2(1 — p) < cosa < 1.
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