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TRIANGULABLE SUBALGEBRAS OF LIE p-ALGEBRAS

DAviD J. WINTER

Triangulability of p-algebras of a Lie p-algebra L is
discussed. Necessary and sufficient conditions are determined
that the maximal triangulable subalgebras of the p-sub-
algebras of L be the normalizers of their maximal nilsub-
algebras. The maximal triangulable ideals of L are located
within a specific interval of a canonical ascending chain of
ideal terminating in the solvable radical of L.

1. Preliminaries. We follow [2], [4], [6],[7], [8] for terminology
and background.

Throughout the paper, & is a field of characteristic »p > 0, K is
the algebraic closure of %, L is a Lie p-algebra over k and L, is
the corresponding Lie p-algebra L @, K over K.

The theorem of Ado-Iwasawa-Jacobson [2, p. 10] assures that
L has faithful p-representations. We are concerned here with the
conditions p-representations of L or of p-subalgebras of L be
diagonalizable or triangulable over k or over K.

The condition that L be a torus is that L be abelian and L,
contain no nonzero mnilpotent element or, equivalently, that every
p-representation of L be diagonalizable over K. An element of I
is semisimple if it is contained in some torus of L. Using the
notation <{y) for the p-subalgebra of I generated by y, an element
x of L is semisimple if and only if xe<(x*). (E.g., see [7, Prop.
2.5]).

PROPOSITION 1.1. =z is semisimple if and only if © — x® is semi-
simple.

Proof. If x — x* is semisimple, then z — x? is contained in
{x — x*)*> and therefore in (2?). Thus, x <€ <{2”) and « is semisimple.
The other direction is obvious.

The condition that L be a split torus is that L be a torus such
that every (respectively some faithful) p-representation of L is
diagonalizable over k. For a torus L to be split, it is necessary
and sufficient that L be the k-span kL. of L. = {x € L|x* = z}. (See
[2], {7, pp. 127-128].)

The condition that L be n<l is that L consist of nilpotent ele-
ments or, equivalently, that every (respectively some faithful) p-
representation of L be nil triangulable over k. There is a unique
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maximal nil ideal of L, which is a p-ideal of L called the nilradical
Nil L of L. One proves this by observing that if A and B are nil
ideals, the A + B is a nil ideal. For (A + B)/B and B are nil,
whence A + B is nil.

Some of the following material is closely related to work of
Seligman [5] and Schue [3]-notably Theorem 1.2 and Corollaries 1.5,
2.4, 2.5. We therefore give only a short sketech of a proof for
Theorem 1.2, which we base on Lemma 1.8 whose proof is of interest
in its own right. The proofs of 1.5, 2.4, 2.5 are then quite short
in the present development, and are included since they give new
insight into the results.

THEOREM 1.2 (Seligman [5], Schue [3]). Ewvery (respectively some
faithful p-representation of L is triangulable over k and only if
the Lie p-algebra L/Nil L is a split torus).

Sketch of Proof. Let p be a representation of L on V. If
L/Nil L is a split torus, one construets a sequence V =V,D
VuiD--+-2V,=0 of p(L)-stable subspaces such that NilLV;cCV,_,
for 1 < ¢ <mn, then refines it, using the split torus L/Nil L, to a
sequence with one-dimensional quotients to show that o(L) is tri-
angulable. Conversely, if o(L) is a faithful triangulable representa-
tion, one gets a p(L)-stable sequence V,>-.--DV, =0 with one-
dimensional quotients and finds that NilL = {xe L|2V,,,CV, for
1 <i=<mn-—1}. Since L/Nil L is then abelian with faithful triangula-
ble representation V,/V, @ - V,/V,, L/NilL is a split torus by
Lemma 1.3 below.

LeMMA 1.8. Let L be an abelian Lie p-algebra having mno nil-
potent elements and suppose that L has a faithful triangulable p-
representation over k. Then L is a split torus.

Proof. We first show that every element of L is semisimple.
To simplify the notation, we take a faithful triangulation over k
and assume that L is a Lie p-algebra of upper triangular matrices.
Suppose that some x € L is not semisimple and take such an « with
minimal rank. Letting a be an nonzero eigenvalue of x, a 'z is
triangular with eigenvalue 1, so that a 'z — (¢ 'x)” has lower rank
than does z. Thus, a 'z — (¢™'x)? is semisimple. But then Proposi-
tion 1.1 implies that o'z is semisimple, so thas x is semisimple a
contradiction. Thus, every element of L is semisimple, and L is
a torus. Thus, the faithful triangulable representation over k% is
actually diagonalizable over &, so that L is a split torus.
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THEOREM 1.4. FEwery (respectively some faithful) p-represen-
tation of L 1s triangulable over K if and only +f L/NilL is
abeltan.

Proof. This is proved just as was Theorem 1.2 except that,
over K, we invoke elementary linear algebra in noting that every
representation of an abelian Lie algebra such as L/Nil L is triangul-
able over K.

COROLLARY 1.5. Let k be perfect. Then every (respectively
some faithful) p-representation of L 1s triangulable over K if and
only if L/NilL is a torus.

Proof. If L/Nil L is abelian, it has no nilpotent elements and,
since k is perfect, it is therefore a torus by [7, Prop. 2.5]. Thus,
L/Nil L, is abelian if and only if it is a torus.

THEOREM 1.6. FEwvery (respectively some faithful) p-representa-
tion of L is triangulable over some separable algebraic extension of
k if and only if L/Nil L is a torus.

Proof. One direction follows from Theorem 1.2 and the fact
that every torus splits over some separable algebraic extension.
(See {8, p. 127].) Suppose, conversely, that L has a faithful triangul-
able p-representation over a separable algebraic extension %' of k.
One shows easily from the finite dimensionality of L that &' can be
taken to be a finite dimensional Galois extension, with no loss of
generality. Let L’ = L,. Then L'/NilL’ is a split torus over %'
Since Nil L' is stable under the Galois group G of k'/k, I’ Nil L
Nil L) =k (Nil L) ck' Nil . (See [6, §1.8]). Thus, Nil I/ =%’ Nil L.
It follows that (L/Nil L), and L’/Nil L' are p-isomorphic, hence that
L/Nil L is a torus.

2. Triangulable p-subalgebras of L. The observation in §1
motivate the following definition.

DerINITION 2.1. L is triangulable if L/Nil L is abelian. And
L is separably triangulable if L/Nil L is a torus.

We now restate Corollary 1.5 as follows.

THEOREM 2.2. Ifk is perfect, L is triangulable if and only if
L 1is separably triangulable.
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THEOREM 2.3. L is separably triangurable if and only if L =
T@ Nil L (direct sum of subspaces) for each maximal torus T of L.

Proof. One direction is clear. Suppose conversely that L/Nil L is
a torus and let 7 be a maximal torus of L. Then (T + Nil L)/Nil L
is a maximal torus of L/NilL by [7, Theorem 2.16], so that
(' + NilL)/NilL = L/NilL and T + Nil L = L.

COROLLARY 2.4 (Seligman [5], Schue [3]). Let k be perfect.
Then L/NilL ts abelian if and only +f L= T@NIilL for each
maximal torus T of L.

COROLLARY 2.5 (Seligman [5], Schue [3]). Let k be perfect.
Then each xe L can be written uniquely as x© = x, + x, where x, 1s
semisimple, x, 18 milpotent and [z, x,] = 0. Furthermore, x, and
x, are contained in the p-subalgebra {(x) generated by x.

Proof. Let A = <{z). Since A is abelian, A = TG NilA by
Theorems 2.2 and 2.3, and ¢ =z, + z, with z,¢ T, =, Nil A. The
unicity of the x,, x, is proved as in the case of the classical Jordan
decomposition of a linear transformation.

The decomposition x = x, + «, is called the Jordan decomposi-
tion of x.

3. Maximal triangulable subalgebras of L. Throughout the
remainder of the paper, we assume that k is algebraically closed.

THEOREM 3.1 (Chwe [1]). Suppose that L consists of semisimple
elements. Then L 1s a torus.

Proof. Suppose that x is a noncentral element of L. Then
there is a nonzero element ¥ € L with [y, x] = Ay for some nonzero
scalar A. But then (ady)x = 0, so that (ad y)xr = 0 by the semi-
simplicity of ady, a contradiction. Thus, every element of L is
central, so that L is a torus™*.

The reader may now easily prove Theorem 3.1 for any k if L
is solvable or has a split maximal torus. Some of the following
material can be generalized accordingly.

THEOREM 3.2. Let U be a maximal nil p-subalgebra of L. Then
the normalizer N(U) = {xe L|[z, u]C U} of U is a maximal tri-
angulable p-subalgebra of L.

* The author wishes to thank the referee for suggesting this nice simple proof.
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Proof. One easily verifies that N(U) is a Lie p-subalgebra of
L and U is a p-ideal of N(U). Thus, the quotient N(U)/U is a Lie
p-algebra. Take e N(U) and write x = «, + 2,. Then the p-sub-
algebra {(x,, U) generated by «, and U is nil since x, normalizes U.
But the maximality of U, it follows that z,€ UU. But then the ele-
ment ©+ U=, + U of NU)/U is semisimple. Thus, N(U)/U
consists of semisimple elements. It follows that U = Nil N(U).
Furthermore, N(U)/Nil N(U) = N(U)/U is a torus, by Theorem 3.1.
Consequently, N(U) is triangulable. Suppose that B is a triangula-
ble p-subalgebra of L containing N(U). Then B = T Nil B with
Nil BoU. By the maximality of U, Nil B = U. But then Bc N(U).
Since N(U) is triangulable and B is maximal triangulable, it follows
that B = N(U). Thus, N(U) is maximal triangulable p-subalgebra
of L.

The “converse” of Theorem 3.2 is that every maximal triangula-
ble p-subalgebra B of L can be expressed as the normalizer B = N(U)
of some maximal nil p-subalgebra U of L. This “converse” does
not hold for any of the bad Lie p-algebras which we now define.

DeFINITION 3.3. A Lie p-algebra L is bad if it has the form
L=ktPT, DU kr where T, is a central torus, U is a central
nil p-subalgebra, ¢* = ¢, [t, ] = « and 2*° is a nontrivial element of
the center of L for all e = 1.

Note for any such bad L that T = kt P T, is a maximal torus,
T, P U is the center of L and the Cartan subalgebra kst S T, P U =
THU = L, is a maximal triangulable p-subalgebra of L = L,
kx = L, L,. Moreover, V =U@k(x —2x,) is a maximal nil p-
subalgebra of L and the corresponding maximal triangulable sub-
algebra is B= N(V) =T, V. Since L,/U is a torus, U is the nil
radical of L,. Since U is not a maximal nil subalgebra of L, L,
cannot be the normalizer of a maximal nil subalgebra of L. Thus
the “converse” of Theorem 3.2 is false for all bad Lie p-algebras.

As an explicit example of a bad Lie p-algebra L, let L = Lkt H
T,HUPke where T,=ks, U has basis {r;, —s]1<i<e—1}, s
and the x, are central, [t,x] ==, t? =¢, s? =s, #* =2, for 1 <i <
e —1 and 2*° = s. This example is p-represented by p° x p° matrices
where s is the identity matrix, ¢ is the diagonal matrix with

diagonal entires 1,2, ---, p°(mod p), = is the cyeclic permutation
matrix
01 0 0
T = .1
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and &, = 2* for 1 <i<e— 1.

DEFINITION 3.4. A Lie p-algebra L is regular if for every p-
subalgebra M of L, every maximal triangulable subalgebra of M is
the normalizer in M of a maximal nil subalgebra of M.

THEOREM 3.5. A Lie p-algebra L 1s regular if and only if L
contains no bad p-subalgebras.

Proof. One direction follows from Theorem 3.2 and the discus-
sion following Definition 3.3. For the other, it suffices to prove the
“converse” of Theorem 3.2 for every Lie p-algebra L which contains
no bad p-subalgebras. Thus, let B be a maximal triangulable p-
subalgebra of such a Lie p-algebra L and write B as B=T+ U
where T is a torus and U = Nil B. Then form N = N(U), noting
that N> B. We claim that U is a maximal nil p-subalgebra of L
and that B= N = N(U), thereby establishing the “converse” of
Theorem 3.2 for L. Note first that T is a maximal torus of N.
For if S is a torus of N containing 7T, then SéD U is a triangulable
p-subalgebra and contains the maximal triangulable p-subalgebra
T+ U, so that SGU=TPU and S=T. Thus, the centralizer
C(T) of Tin N is a Cartan subalgebra of N (see [7, Theorem 2.14])
and we have the root space decomposition N = C(T) D >iso N of N
with respect to T. For xeC(T), we have x = x, + x, with z,e T.
Since x, centralizes 7' and is a nilpotent element of N normalizing
U, the p-subalgebra {x,, U) generated by z, and U is nil and T +
{%,, U) is consequently a triangulable p-subalgebra containing the
maximal triangulable p-subalgebra B. Thus, T + <{x,, U) = B =
T + U. This shows that z,€ U, and therefore that x,cC(T) N U.
It follows that C(T) = T @V where V is the nil p-subalgebra V =
C(TYNU. Now take any element ze N, with a# 0. Since
(ad 2*)N; € N;,p,, we have (ada?)N;C N, for all B, where 0=
[ad ¢, ad #?] = ad [¢, 27] so that 0 = (ad ¢)*x® and therefore 0 = (ad ¢)x?
for all te¢T. Thus, 2°€C(T) =T&@ V. It follows that xz? is in
(TeV)N{yeL|ly,»]=0=T,OW where T,={yeT|[y,x]=0}
and W is the nil p-subalgebra W = {ye T'|[y, 2] = 0}. Note in this
connection that for any element y of TPV, y equals y =y, + ¥,
with y,¢T, y,€V and [y,2] =0 if and only if [y, 2] =0 and
[¥., 2] = 0. What we have shown is that e T, W. Choose t in
T.={se T|s* = s} such that [¢, ] = x. This is possible since {0} +
a(T) = a(kT,) and since a(s)e€{0,1, ---, p — 1} for se T.. For one
can choose se T, such that a(s) =20 and let ¢t = a(s)™'s, so that
at) =1 and [t,2] =«. We then have T = T, kt where T, is
defined as the centralizer of  in T. We have shown that x> T, P W,
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so it follows that a?°e¢ T, P W, for all e = 1, W, = Center W. Since
the p-subalgebra kit T, P W, P kx of L cannot be a bad p-sub-
algebra of L, by our hypothesis, we must have 2*° = 0 for some e.
But then z is nilpotent and normalizes U, so that T {x, U) is
triangulable and x ¢ U as before. It follows that U contains every
2 In every N, with a = 0, so that N is just N=T& U. That is,
B = N. It remains to show that U is a maximal nil p-subalgebra
of L. Suppose that it were not and let US M where M is a
maximal nil p-subalgebra of L. By Engel’s theorem, ad U re-
presented on the quotient space M/U has a nonzero eigenvector
m + U with eigenvalue 0, so that me¢ U and @d U)m + U =0+ U
or [U, m]cU. Thatis, we have m e N(U). But m is nilpotent and
we have seen that N(U) = T@ U. Thus, me U, which contradicts
our choice of m such that m¢ U. Thus, U is a maximal nil p-sub-
algebra of L and the maximal triangulable p-subalgebra B has the
asserted form B = N(U).

4, Maximal triangulable p-ideals of L. The radical Rad L
of L is the unique maximal solvable ideal of L, and it is easily seen
to be a p-ideal of L containing the nil radical Nil L. It is convenient
to also define the toral radical of L to be the maximal toral ideal
Tor L, of L.

PROPOSITION 4.1. Suppose that a torus T of L is contained in
the center of an ideal I of L. Then T is contained in the center
of L. In particular, Tor L is the maximal torus of the center of
L.

Proof. Since [T, L|c I, we have [T, [T, L]] = {0}. But ad T is
diagonalizable, so that [T, L] = {0}.

We say that L is semisimple if Rad L = {0}.

PROPOSITION 4.2. L s semisimple if and only if Nil L = {0}
and Tor L = {0}.

Proof. One direction is trivial. For the other, suppose that
R = Rad L is not {0} and choose % such that R = {0} and R = {0}.
Then the p-ideal A = (R™) is abelian. If the maximal torus T
of A is not {0}, then Tor L = {0} by Proposition 4.1. Otherwise A4
is a nil p-ideal of L and Nil L is not {0}.

We let L, =NilL, L,/L, = Tor(L/L,), L./L,= Nil (L/L,), etec.
We then have a sequence L,c L,c L,c---CL,= L,,, = +-- of p-
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ideals of L contained in Rad L. Since Nil L/L,={0} and Tor L/L,={0},
L/L, is semisimple by Proposition 4.2, so that the series stabilizes
at L, = Rad L. This series may be called the ascending nil-toral
series for L. Its counterpart in characteristic 0 always stabilizes
RadL=L,=L;= +--,

THEOREM 4.8. Let I be a maximal triangulable p-ideal of L.
Then L,cIZ L,

Proof. Write I = T@U where T is a torus and U = Nil I.
Since U@ Nil L is a nil p-ideal, T+ U + Nil L is a triangulable
p-ideal containing I, so that =T+ U + Nil L and NilL cU. Since
Tor L/L, = L,Nil L is a central torus in L/Nil L is a central torus
in L/Nil, we have L, = T,@ Nil where T, is a torus and [T,, L] C
NilLcU. Thus, U is a p-ideal of I + L, =1 + T,. Since I/U is a
toral ideal of (I + T,)/U, (I + T,)/U is the sum of two commuting
tori I/U and (U + T,)/U, by Proposition 4.1. Thus (I + Tp)/U is a
torus, so that I + L, =1 + T, is a triangulable p-ideal containing
the maximal triangulable p-ideal I. Thus, L,cI. We claim that
ICL, Since I/U is a torus, [I, I] is a nil ideal of L and [I, I]C
Nil L = L,. That is, (I + L,)/L, is an abelian ideal of L/L,, so that
the maximal torus (T + L,)/L, of (I + L,)/L, is central in L/L,, by
Proposition 4.1, and is therefore contained in Tor L/L, = L,/L,. Thus,
TcL, and it follows that I/L,=(U+ L,)/L, is contained in Nil L/L,=
L,/L,., But then we have I C L,, as asserted.

As an example, let & have characteristic » = 2 and let L be the
Lie . p-algebra L = ke_ + kh + ke, where [e_,e.] = h, h is central,
(e_)? = (e,)* =0 and h* = h. Then L is nilpotint, and I = ke_ + kh
and J = kh + ke, are two distinct maximal triangulable p-ideals of
L such that LIS L,, L, J% L,. This Lie p-algebra has the
p-representation

00 5 10 01 [ | -10 10 L
=1 = = P [ = = =
== \1 0/ 01) “ " oo o 01/ " \o1
since p = 2. The reader should note, in this example, that L, =0,
Lz = kh, L3 = L-
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