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Let ^ 7 be a self-adjoint ordinary differential operator
on a Hubert space L2(^)f ^ an open interval, while -%̂  will
denote a bounded self-adjoint operator on the same space.
An eigenfunction expansion associated with J E Z ^ ^ + ^ i s
developed when *5f is an integral operator whose kernel
K(xf y) has compact support in ^ X ̂ . It is assumed that
if £?f=Σk=oak((ϋ)Dkf, where D=(d/dx), then
Jc = 0, , n, and an(x) Φ0 for

In the previously studied cases, when 3ίΓ — 0, one can choose a
specific basis for the space of solutions to the equation

Σ ak(x)Dks(x, I) = ls(x, I) ,
fe=0

and, by analysis of the resolvent of the operator £f, prove that the

mapping / —> / defined by f(v) = \ f(x)s(x, v)dx is an isometric map-
ping from L2(^) onto L2(dp), where dp is a matrix-valued measure
on the line. Here s(x, v) is a vector-valued function whose components
are the elements of the distinguished basis. With major modifications
this plan is carried out to give similar results for the operators

The analysis begins with a study of self-adjoint operators formally
agreeing with Sf on L\^)1 ^ a compact subinterval of *J^ and
their perturbations by operators 3ίΓ as above. With mild restrictions
on the domains, these self-adjoint operators have compact resolvents.
This allows us to exhibit analytic bases for the solutions of the

integro-differential equations Lf + \ K(x9 y)f(y)dy = If. These bases
provide an analog of the usual basis of solutions to the differential
equation Lft = If, which satisfies /ίy"υ(c, I) = 8iS for some c e ^ The
resolvents of operators S$f as above share most of the smoothness
properties of the resolvent of the differential operator £fm In par-
ticular if £f has order at least two, the resolvent of H will be an

integral operator, RH(l)f = I RH(x, y, ΐ)f{y)dy, whose kernel is con-

tinuous in the pair (x, y) and analytic in I.
These results allow us to use the methods of Coddington [2], [4],

and Coddington and Dijksma [5] to derive eigenf unction expansions
closely paralleling those known for ordinary differential operators.
Formally the difference arises when eigenspaces of H have dimension
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328 ROBERT CARLSON

greater than the order of £f. The corresponding set of eigenvalues
is shown to be a closed countable set of real numbers, and the
eigenspaces have finite dimension. This contrasts strongly with the
pathology possible if no restrictions are made on the support of the
kernel of the perturbation JίΓ. A discussion of this problem is in
§VII.

Fixing notation, denote the real and complex numbers by R and
C respectively, and let Co be the set of complex numbers with nonzero
imaginary part. If H is a Hubert space operator its null space,
range and domain are v(H), R(H), and D(H) respectively. The operator
(jff— H)~\ defined in the resolvent set p(H), will be denoted by RH(l),
and σ(H) will be the spectrum of H. H* will be the adjoint of H.
The formal operator ΣJ= 0

 akDk is denoted by L.
This work was part of the author's dissertation, written under

Earl Coddington. I would like to take this opportunity to thank
him for his assistance.

II* Abstract preliminaries* If B and T are Hubert space oper-
ators satisfying D(T)czD(B), and if there are constants a, β such that
II5/H ^ α | | / | | +/3 | |Γ/ | | for all feD(T), then we say that B is Γ-
bounded. If we can choose β < 1 we say B has T-bound less than
one. The following theorem, due to Rellich (Kato [9]), shows that
£? + 3ίΓ is self-adjoint.

THEOREM 2.1. If B is symmetric and T-bounded with T-bound
less than one, and if T is self-ad joint, then T + B is self-ad joint.

The next well known result can be found in [8] (p. 121).

LEMMA 2.ii. Let A and B be closed operators on a Hilbert
space. If D(B) c ΰ ( i ) , then there is a constant K such that \\Ax\\ ^
J5Γ(||α>|| + \\Bx\\) for all xeD(B).

In what follows we will need to know that certain symmetric
operators have self-ad joint extensions with compact resolvents. For
this reason we introduce the notion of compact embedding. We say
that a Hilbert space §ίf is compactly embedded in L\^f) if each
element of Sίf is in L\J^) and if every sequence {fn} c £ίf that is
bounded in the norm of έ%f has a convergent subsequence in

THEOREM 2.iii. Let H be a self-adjoint operator on L\ J^). The
following are equivalent'.

1. D(H) in the graph topology is compactly embedded in L 2 ( ^ ) ,
2. the spectrum of H consists of isolated eigenvalues of finite
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multiplicity,
3. (H - I/)"1 is compact for leρ(H).

Proof. Suppose (1) is true. Since (H — I/)"1 is bounded by
l/d(l, σ(H)), we have

\\H(H-U)-τ\\f + \\(H - I/ r/ i | ^ Γ
L α(l, CF(Jti))

or (H - I/)"1 is bounded from L\^) to D(H). This proves (3).
Moreover, that (3) implies (2) is well known.

To see that (2) implies (1), let λ be real and in the resolvent set
of H. It is easily verified that μ is an eigenvalue of H of multi-
plicity m if and only if l/(μ — X) is an eigenvalue of (H — λ/)"1 of
multiplicity m. Thus (H — λ/)"1 has a bounded set of eigenvalues
of finite multiplicity clustering only at zero. By the spectral theorem
for self-adjoint operators, (H — λ/)"1 is compact. In fact, to ap-
proximate (H — XI)"1 uniformly within ε by a finite rank operator
simply compose (H — λl)~~ι with the orthogonal projection onto the
eigenspaces corresponding to the eigenvalues of norm greater than or
equal to ε.

Thus, since H — XI is bounded below, the set of / 6 D(H) such
that 11/11 + \\Hf\\ ^ 1 is contained in the set of / such that
II(JET— λ/)/| | <; K, for some constant K. Now this set of feD(H)
is just (H — Xl)~ι of the JSΓ-ball, a set with compact closure.

Recall that £f is a self-adjoint ordinary differential operator on
L\^) whose domain is assumed to include CS°(^), the infinitely
differentiate functions with support in *J\ Let H be another self-
adjoint operator satisfying D(H) = D(£f). The closure of the restriction
of H (resp. £f) to CΌ°°(̂ ) will be denoted by Jϊo(resp. J2^0) and called
the minimal operator associated with iϊ(resp. £?). Since, by (2.ii),
the graph topologies of D(H) and D{£f) coincide, D(H0) = D(^f0).
Considering these operators as subspaces of the Hubert space L2{J^) φ

we have:

LEMMA 2.iv. The dimension of H*ΘH0 is twice the dimension
of

Proof. It suffices to show that the dimensions of HΘH0 and
are equal. Define a linear mapping Q from Sfθ^ to HΘHQ as follows.
If {/, Sff] e £fθ£fQ define Q{f, Sff\ to be the orthogonal projection
of {/, Hf) onto HΘH0. Since {/, £ff} e £fθ£f0, f e D(^f0) if and only
if / = 0, hence Q is an injection from £fθ<£fQ into HΘH0. This implies
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that the dimension of HΘH0 is no smaller than that £?θj^?^ Reversing
the argument yields the result.

The next pair of lemmas generalizes work in Dunf ord and Schwartz
([7], p. 1400). The notation is as in [3]. For closed operators we
are simply identifying the operator with its graph. Let £ίf be a
Hubert space.

LEMMA 2.V. Let S be a symmetric subspace in £%f ζ& Sίf with
adjoint subspace S*. IfN= {{/, 0} 6 S*}, then S + N = {{/, g) +
{h, k) I {/, g] e S, {h, k) e N} is symmetric.

Proof. As subspaces (S + N)* = S*f]N*. Since N = v(S*) 0 {0},
jV* = si?0 (v(S*)y = X φ (R(S))C. Thus (S + N)* = S * n ( ^ θ
(R(S))C). Obviously both S and N are subspaces of (S + N)*, hence

Define M± = {{/, ± if) e S*}. Then it is known ([3]) that every
self-ad joint extension H of S is of the form H = S φ (I - V)M+

where / denotes the identity on £$f 0 3$f and V is an isometry from
M+ onto M".

LEMMA 2.vi. Suppose N Π S — {0} α^d dimension M+ = dimension
M~ < oo. Γfeβ^ ίfeerβ is α self-ad joint subspace extension H of S
such that NΓ\H= {0}.

Proof. Let ί^ be any self-adjoint extension oί S + N. We have
the usual decomposition i^ = S φ (I — V l̂f4", and since S + N is
symmetric there is a subspace WaM+ such that S + N = S 0
(I — Uj) W, where U1 is an isometry of W into M~ (see Coddington
[3]). First we show that U1 = VΊ| T7. Since S + NaHj. every element
in (S + iV)0S can be written as (/ - Vί)w1 = (I - C/J^. The ortho-
gonality of If+ and ikί" implies w1 = w2, and hence V1wι = ί/^i.

Thus S + iV = S 0 (I - FJ TΓ. Define an isometry V from M+ to
M~ by requiring F = FX on WL, where W1 = M+ΘW, and F = - Vx

on TF. Extend F linearly to get an isometry. Define H — S 0
(J - F)M+, and observe that (I - F)M+ = (I - 7)17© (I - V)WL.

To establish AT n H = {0} we let {/, 0} 6 S 0 (I - F)ikP. Since
(J - F) TF1 = (J - Vd W1, and (I - Fx) TF1 is orthogonal to S + N, we
must have {/, 0} 6 S 0 (/ — F) W. Consequently there are elements
s,eS, Λ6 W and fee 7T7 such that {/, 0} = s, + h - k. Since the
isometry F is - Vγ on W, the element s, + h + fc e S 0 (J - Fx) TF =
S + N. Thus there is an s2 6 S such that (sx — s2) + h + k e N.
Since iV is a subspace and {/, 0} 6 N, (2βx — β2) + 2h e N. Since /̂
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is now in (S + N) Γ) M+, it follows that h = 0 since S + N cannot
have +i as an eigenvalue. This further implies & — 0, so that /,
now in S f) N, must be 0.

III. Solutions of Lf + t ϋΓ(α, y)f(y)dy = I/. If S is a sym-
metric ordinary differential operator agreeing with L = Σt=o UkDk

on its domain, then the finite dimensional space y(S* — II), leC, is
contained in the finite dimensional space of solutions of the associated
differential equation (L — ϊ)s(x, I) = 0. A basic existence theorem for
ordinary differential equations guarantees bases for the spaces of
solutions of (L — ΐ)s(x, I) = 0 which are, for fixed x, entire functions
of I. Here we develop analogous results for certain symmetric
operators with finite deficiency indices.

THEOREM 3.i. Let S be a densely defined symmetric operator in a
Hilbert space £$f, H a self-ad joint extension of S in the same Hilbert
space, and dimension v(S* — II) < °o for lep(H). Then there is a
basis for v(S* — II) which is analytic on path-connected components
of p(H).

Proof. Fix loep(H) and let 0<(!<>), i = 1, •••, n a basis for
y(S* — I0I). For ϊ in the same path component as ϊ0 define functions

0,(D = [f + (I - lo)RH(DMlo) for i = 1, . , n .

One can verify directly that #<(!) ey(S* — II), and, as long as
||(I - lo)RH(l)\\ < 1, ROQKU will give a basis for v(S* - II). What we
intend to show is that {#*(!) }Li is in fact a basis for v(S* — U) for
all I in the same path component of p{H) as Io.

Pick ϊi 6 /o(ff) and for each i — 1,2, , n define

0,(D - [I + (I - U S

Since 72̂ (1) — RH{^) — (I — m)RH(ϊ)RH(m), we have

= [/ + (ί - WRπ

+ (k -

= [i + α -

In other words the "different" definitions of 04(I) and 8$) agree.
Given ϊ0 and ϊ in the same path component of p(H), it is possible

to find a path in p(H) from Io to I. Using the compactness of this
path we can find a finite set of points {zJίU such that Zt e p(H), l0 = zl9

I = zk and
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( t ) \\{zw-zτ)RH{zi+1)\\<l.

Thus {̂ («2)}?=i is a basis for v(S* - zj). Now θt(z3) is both [/ +
(z3 - ^ W l ί i W and [I + (z3 - z^R^z^θ^. By (f) {0,(s8)}?=i is a
basis for v(S* — z3l). We continue the induction to complete the
proof.

COROLLARY 3.ii. Let dimension v(S — XI) = 0 for λeC, ami
suppose dimension M+ = dimension M~ < oo. If S has a self-ad joint
extension with compact resolvent, then there is a neighborhood U of
λ and a basis for v(S* — λ/) which is analytic in U.

Proof. By (2.vi) there is a self-ad joint extension H of S with
Xep(H). Now apply (3.i) to get the result.

LEMMA 3. iii. Let & be a self-adjoint ordinary differential
operator on L\^)f and let JT~ be symmetric with ΰ ( ^ ) c D ( X ) .
Assume that £f + 3ίΓ is self-adjoint and, if £f0 is the minimal
operator corresponding to £?, that ΰ ( ^ 0 * ) c ΰ ( J Γ * ) . Then D{L*) =

Proof. Recall that i?((^S + ̂ Γ)*) = {/ 6 L\^) \g->((j^Q + sτ)g9 f)
is continuous on D(£f* + ̂ T)}. If / 6 D(£f?), then ( ( ^ + 3ίT)g9 f) =
(g9 (J^O* + J2Γ*)/), so D{£(?) c JD((̂ f? + 3TT). Now by Lemma 2.iv
dimension ( ( ^ + ̂ Γ)*^(^o + ̂ Π) = dimension (£f*θ^f0) < oo. This
forces D(^o*) = 0((J25 +

In the regular case, that is when ^ = (α, 6), — oo < α < b < oo,
the coefficients ak of L are in Ck([a, b]) and α%(cc) ^ 0 for x e [α, 6],
the domain of ^ * has an alternate description. Then J D ( ^ * ) is the
set of all / e L%J^) such that / e Cn-\[a, &]), f{n~ι) is absolutely con-
tinuous on [α, 6], and Lf 6 L2

THEOREM 3.iv. Lei H = ^f + ^Γ, Ho = ^f0 + ^T as above.
Suppose that for some Io 6 p(H) we have dimension v(Ht — IJ) = n.
Then there are points Ciβ^i = 1, •••, n, a neighborhood U of ϊ0

and a basis tx(x, ϊ), , tn(x, I) for v(H* — U) such that ^(1) is analytic
from U —> L2{J?) and t^Cj, I) = £ t i /or I e Z7. Moreover for fixed x e
w "̂ t4(sc, I) is α^ analytic function. If σ(H) is discrete we can choose
U = C\{closed countable set}.

Proof. We start with the basis s^x, ϊ), •••,»»(», I) constructed
in (3.i). First we need to establish the analyticity of Si(cif I ) , ' c < e ^
Letting lt e p(H) we have
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lim *i
I — Ii

- lim

Here we have used the continuity of evaluation on D(H) with the
graph topology and the analyticity of RH(l).

Now pick c ^ J ^ such that sx{cu Io) Φ 0 and define a basis for
(ifo* ~ I/) by setting

bltί\d/9 I) —

*i (Clf I)

siΛ{xf I) - 8,(0?, I) - s-^-k(x, I) , i = 2, .. , n .

This basis is well defined and analytic if s^c^ I) Φ 0, which, since
8x{c191) is analytic, will be everywhere in ρ{H) except for a set of
isolated points. Notice that 8lfl(d, I) = 1 while sίΛ{clf I) = 0, i — 2, , n.

Inductively define si)3'(xf I) for j = 2, , n by

Si,i(^, I) = βij^ix, I) if i ^ i - 1

, I)
for

where c, is chosen so that SJJ^CJ, Io) ^ 0. Then {su%}t=1 is a basis
for v{H* — I/) in an open set containing Ix and including those points
in ρ(H) where sM(cέ, I) Φ 0, i — 1, , n. By construction we see that
if σ(H) is discrete, then the set where our new basis is not defined,
which we call the singular set, must be countable and closed.

Moreover the collection {si>n(x, I)}?=1 satisfies sj>n(cif ϊ) = 0 if i < j
and sj}j(Cj, ϊ) = 1, j = 1, , n. Without adding to the singular set
we construct a new basis as follows: Define t»(x, ΐ) — 8n,n(x, I), and
inductively define tjx, I) = «»,«(&, I) - Σfc>m β«,«(cfc, ΐ)tk(x, ϊ) for m =
(n - 1), (w - 2), •••, l Then {ίw(α, I)}i=1 is the desired basis for

- U).

To develop eigenfunction expansion for £? + X%Γ as above we
use the notion of generalized resolvent. Let §4f be a subspace of
the Hubert space Ŝ , let S be a symmetric operator in Sίf, and
suppose that M is a self-adjoint extension of S in ^ . Then the
generalized resolvent RM(l): Sίf-^^f is defined by RMQ)f = P(M-U)-1f,
I e Co, where P is the orthogonal projection from ^ onto £ίf. We
will need Theorem 4 of Coddington [5], which treats in addition the
generalization of generalized resolvents to subspaces.
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THEOREM 3.V (Coddington). The generalized resolvent RMQ) of
a symmetric subspace in 3$f φ £ίf corresponding to the self-ad joint
extension H in & 0 ^ , έ%f c ^ , satisfies:

( i ) jβjf(I) exists as an operator on all of S$f,
(ii) if T(l) - {{RMQ)h, WMQ)h + h}\he ^T}, then Sc Γ(I) c S*f

(iii) IIΛjrODH^l/dllmlH),

(iv) RM(Ψ = Λird),
(v) Im (RMQ)h, h)/Im I ̂  11 Λ* (I)fc 112, Λ 6 ^
(vi) RM(ί>) is analytic for Im I Φ 0 m ίfee uniform topology.

For the moment (ii) is of paramount importance. Suppose HQ —
^ + J£"~ as in (3.iv), and suppose Ho has a self-adjoint extension
H in L2(/). Let ilf be an extension of Ho in a possibly larger space
with generalized resolvent RM(ΐ). We want to understand RH(Ϊ) — RM(ΐ).
If / e L 2 ( ^ ) we have {£*(!)/, IΛjrG)/ + /} e iϊ0* and {^(ϊ)/, lRH(ΐ)f +
/}6 fl?f so letting A(l)f=RM(ΐ)f-RH(ΐ)f we have {A(I)/, U(I)/}6iJ0*,
or AQ)fev(Hf-U) for all feL\^). Conclusions (i), (iv) and (vi) of
(3.v) apply immediately to A(ΐ), and (iii) becomes ||A(I)|| ^2/( |ImI|).

Adopting the vector notation in [5], we let the components of
a(ΐ) be an orthonormal basis for v(H* — II), I e Co. For matrices with
the same number of rows and entries in L\J?) we define {F, G) —

\ G*F. It is easy to show that

A(l)f =

where α(I) - (A(ί)α(ϊ), α(I)). Thus A(ΐ) is a Hilbert-Schmidt integral

operator and we can write -4.(1)/ = \A(x, y, ϊ)f(y)dy for all / e L\^),

IeC 0.
If we use our analytic basis {tt(x, ΐ)}7=1 for v(H* — ϊ/), developed

in (3.iv), then except at the set of singular points we can write
A(x, y, I) - t(x, ΐ)β(l)t*(y, Γ) where t(x, I) = Ux, I), .., i.(a?, I)). Fol-
lowing the reasoning in ([5], p. 19) we get the following:

LEMMA 3.vi. For those leCQ where t(xt I), t*(y9ϊ) are defined we
have /3(ϊ) analytic and (β(J))* = /3(T).

Proof. For f,ge L\J?) we have

(A(I)/, flr) = (id), ̂ )/3(ί)(/, ί(D) .

Thus for ϊ0 outside the singular set we have

(A(I)ί(I0), φ) = (ί(0, t&))β(J)(φ, *(ϊ)) ,

where we use matrix inner product. Now for I — Io the matrices
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(t(J), t(l0)) and (£(ϊ0), tφ) are invertible since the components of £(I0), £(ϊ0)
are linearly independent. Since these inner products are analytic for
I near ϊ0 the inverses exist and are analytic. Thus β(ΐ) is analytic
for I near ϊ0, and since ϊ0 was arbitrary we have the first part of the
result. For the symmetry (β(ΐ))* = βφ we use the fact that A(ΐ)* =
AQ), hence A(x, y, I) = A(y, x, Γ). Now

βjl) = A(ct, c, , I) - A(cjf cif ϊ) = βjf tφ ,

completing the proof.

IV. The kernel of RH(l). We turn to the nature of RH{1) itself,
where H — ̂ f + 3ίΓ as above. In particular we show that if the
order of £^ is at least two, then RH(ΐ) is integral operator with
kernel RH(%, V, I) continuous in the pair (x, y) for ϊ fixed and analytic
in ϊ for (x, y) fixed.

LEMMA 4.i. Suppose G is an integral operator on L2(<J^), Gf ~
I G{x, y)f(y)dy, such that mapping x —> G(x, •) is continuous from
J^ —» L\J?). Let A be bounded. Then GA is also an integral oper-
ator with kernel continuous in L2{ J^) as a function of x.

Proof. We have

(GAf)(x) - ^G(x, y){Af){y)dy - (Af, G(x, •))

- (/, A*G(x, •)) - ( [A*G(x, )](y)f(y)dy .

Thus the kernel for GA is [A*G(xf )](2/) The boundedness of A
yields the continuity.

LEMMA 4.ii. Let G and K be bounded integral operators with
kernels G(x, y), K(y, z) respectively. If x~>G(x, •) and z—>K( ,z)
are both continuous from ^ —> L2{J^)f then GK has the kernel
L(x, z) = \ G(x, y)K(y, z)dy, which is continuous in the pair (cc, z).

Proof.

\L(x19 zλ) - L(x2, z2)\ = I J^tGfe, y) - G(x2, y)]K(y, zλ)

+ G(x2, y)[K(y, z±) - K(y, z2)]dy

t*\\G(χ19 ) - G f e , Oil

+ \\G(xt, 0l
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The result follows immediately from the right hand side of the in-
equality and our hypotheses.

LEMMA 4.Hi. If H is a self-ad joint operator and A is a symme-
tric operator which is H-hounded with H-bound less than 1, then
for leC

RH.A(l) = RH(ί) + RH{Ϊ)A[I + RH.A(l)A]RH(ί) .

Proof. By Theorem 2.i H — A is self-ad joint on D(H). Since

[/ - RH{ΐ)A\RH_A(ΐ) = RπQ) we have

RH_A{\) = RH(D + RH(l)ARA_H(ΐ) .

Thus

RH-AQ)A = RH{l)A + RH{\) ARH_A{Ϊ)A

- REQ)A[I + RH-A(l)A] .

Consequently

I + RH-Λ(DA = BB.Aφ(H - U)

= 1 + Ra(ΐ)A[I + RH-J$)A] .

Applying RH(ΐ) to the right gives the result.

THEOREM 4.iv. Let H be self-adjoint in L2(<J^), A symmetric
and bounded. Suppose for leC0 the operator RH(Ϊ) is an integral
operator with a kernel RH{x, y, I) that is continuous in {x, y). If
the mapping x-±RH(x, , I) is continuous from ^ —»L\^), then
RH-AQ) is also an integral operator with kernel continuous in (a?, y).

Proof. Because RH(x, y, I) = RH(y, x, T) we see that the mapping
y-^RH('f V, I) is continuous from ^^—>L2(^"). By 4.iii we have

RH.A(l) = RH(l) + RH(l)A[I + RS-AQ)A]RHQ) ,

and RH(J) has continuous kernel.
Now Lemma 4.i shows that both RH(J)A and RH(ί)ARH_A(ί)A are

integral operators with kernels Gt(x, y, ϊ), i — 1, 2, such that the
mappings x—> Gt(x, , I) are continuous from ^ -^L\^). Finally
Lemma 4.ii finishes the proof.

THEOREM 4.V. Let £? be a self-adjoint ordinary differential
operator on L2(a, b) agreeing with L = Σ ί =o ak(f)Dk on its domain.
Then for leCQ the resolvent RL(ΐ) is an integral operator with kernel
RJZ>(X, y, I) such that the mapping x —> R^{x9 , I) is continuous from
(a,b)-+L\a,b).
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Proof. From Coddington [2], [5], we know that RL(Ϊ) is an
integral operator of Carleman type whose kernel is, for fixed I,
continuous in (x, y) for x Φ y and which, for fixed y, satisfies Lf —
If as long as x Φ y. Moreover the kernel extends continuously to
the diagonal x = y from either above or below if n = 1, and is
continuous in case n ^ 2.

Suppose that a < x x < x2 < b. Then

v, I) - RA*» v> ΐ)\2dy = 1 l#*0&i, v, I) -
J

S b

\RA*if Vf I) - RAX* v, ΐ)\*dy .
x2

Since RA%9 y> 0 ίs> f ° r fixed I, uniformly bounded on compact subsets
of (α, 6) x (α, 6), we see that

lim \'*\RAχι, y, i) - RA*» y, i)\2dy = o .

Now consider the -^-dimensional vector space of solutions to
Lf = If. This vector space has a subspace of dimension m whose
elements, when suitably restricted, are in L\x2, b). Let a basis for
this subspace be given by φt{y), "-9φm(y). Since, for x and I fixed,
we have R^(xf y, ΐ)eL2(a, 6), we can write for I fixed and ye[x2, &),
RA®* y> I) = ΣS=i oίi{x)Φi{y). We claim that as xt -> aj2, a^) -> α ^ ^ ) .

To see this we use the continuity of RA®$ y> I) ίn (χ> v)
know that for y in any compact interval of [x2, b) we have

lim {ΣiaάxJφM - at(xύΦi(y)}\ = 0

uniformly in ?/. By the linear independence of φt(y) on any interval
the coefficients must be converging. That is lima.1-,a.2[αi(ίc1)—α<(ίc2)] = 0.

Since φt e L\x21 b) we have

S b

I RAvif y> i) - RAχ» y> i) la^y = o .

Using a similar argument of the integral from a to ^ gives the
result.

THEOREM 4.vi. Let H be a self-adjoint operator on L\<yr) and
suppose ϊep(H). If RH(ΐ) is an integral operator with kernel
RH(%> y> ϊ) continuous as a function of (x, y), then RH(x, y, I) is ana-
lytic for (x, y) fixed.
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Proof. From the resolvent equation we have

RH(x, V, Ii) - Rπfr, V, I2) = (Ii - I2) \RH{X, Z, IJRπiz, V,

for all x, y^J^\ and I2 in p(H). Thus RH(x,y,ΐ) will be analytic
if we can show the existence of limίl_l2 \RH(X, Z, l^RH{^, y, I2)dz. In
other words, it suffices to show that, for x fixed, the map I —>
RH(X, >I) is continuous from p(H)-±L2(,J^).

The argument runs as follows:

\\RH(x, , U - RH(x, , I 2 ) | | 2 - J \RH(χ, y, Ix) - RH(χ, y, I2)\*dy

H{x, Λ ) - R~H(x, , ϊ2))

Thus Jlikfo , IJ - ^(a?, , Ϊ2)|| ^ \\RAk) - RH{12)\\. Since Λ^I) is
analytic in the uniform topology this implies the continuity of the
map I—> Rπ{x, , I) from p(H)-+L\^) for each fixed x.

V* Spectral measures* Returning to the operators
described in the introduction, we observe that since the kernel K(x, y)
for 3ίΓ is compactly supported in ^ x ^ we can find a compact
square J S x S c J ^ x J ^ off which K(x, y) vanishes, and an open
interval ^ such that B c ^f and the closure of ^f is compact in
J?\ Now L\^) decomposes as an orthogonal sum
Define a symmetric operator by restricting H — £f + 3ίΓ to
then closing the operator Sjr in L\^). By virtue of 2.i, 2.iii and 2.iv,
D(Sjr) is compactly embedded in L\^) and dimension {S*jθSJ) < oo.
Observe that ί ί is a self-adjoint extension of S^ in the larger space

), where we are identifying L\^) with

Using the results of §111 we can find, for all I such that
v(S^ — II) = 0, one of the bases which we previously denoted {tt(x, I)}?=i.
Since ^f\β has interior and each function ti(x, I) satisfies

(L - 1)4,(0?, I) = 0

on ^\β for those I for which it is defined, we can define natural
extensions of tt(x, I) to the interval ^ by continuing the solutions
of the differential equation. More specifically, ^\B consists of two
components, each of which has as a subset part of the interior of
^\β. Call these components C1 and C2. On Cx define an extension
of ti(x, I) as the unique solution of (L — I)/ = 0 which agrees with



SELF-ADJOINT INTEGRO-DIFFERENTIAL OPERATORS 339

tt(x, I) on Ct Π {^\E). Defining an extension on C2 analogously, we
will henceforth call this extension <<(&, I). The analyticity of these
functions is preserved when they are extended.

LEMMA 5.i. Let L be a formal differential operator of order n
defined on an open interval ^ Suppose ^ = (α, b) is an open
subinterval of ^ and t(x, I) = (tx(x91), , tn(x9 I)) is a basis for the
solutions of (L — U)f(x, I) = 0 on ̂ f. If the mapping I —> ίt(I) is,
for each i, analytic from Uopen —> L2(^f), then for each ye<J^b < y,
the extension of tt (x, I) satisfying (L — ll)ti(x, I) = 0 for x e (a, y)
also has I—> tt(x, I) analytic from U-+ L2(a, y).

Proof. Let s(x, I) = (s^x, I), •••, sn(x, I)) be the solution of
(L - ΐ)s(x, I) = 0 satisfying s\5~ι\c, I) = δid, for some c e j ^ Then for
each 16 U the extension of the solution t(x, ϊ) to ^ must satisfy
t(xf ΐ) — s(x, Ϊ)D(Ϊ) for some n x n matrix D(l). Since I —> 8t(x, ϊ) is
analytic from C-+L2[(a + 6)/2, τ/j, it suffices to show that I—>D(I) is
analytic for I e C7.

Fix Io 6 U. Since the components of s(x, I) are linearly independent

in L2[(a + 6)/2, 6], we have that S(I) - Γ s*(x, I0)s(x, ΐ)dx is analytic
J(α+2)/2

and invertible for I near Io. Moreover by the assumption of analy-

ticity of t(x,ΐ) in L\ ?) we see that Γ(I)t = T s*(x, lo)t(x, ϊ)dx
^ J(o + )/2

is analytic for I near Io. Since Γ(I) = S(l)D(J) we have D(I) =
which shows that I~>Z)(I) is analytic for 16 U.

LEMMA 5.H. Let ^ be as above. Then A, the set of eigenvalues
for SJy is independent of

Proof. Let λ be an eigenvalue for S^ with eigenfunction φx for
some i n t e r v a l ^ Then by the uniqueness of solutions to the initial
value problem for ordinary differential equations φλ is supported in
J5. Consequently φλ is an eigenfunction for one S^ if and only if it
is an eigenfunction for all Sj?.

LEMMA 5.Hi. Let ^f be as above and let J be an open interval
containing ^ such that the closure of J is compact in <J^. Sup-
pose that Sj is the minimal symmetric operator associated with
H and J. Then the extended functions {t^x, I)}?=i, when restricted
to J, form a basis for v(Sy — II) for those ϊ e C where {tt(x91)}ί=1 is
defined.

Proof. According to 2.iv the dimension of SfθSy is the same as
that of the corresponding difference for the minimal and maximal
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operators corresponding to L on L\J). This is just 2n = 2 dimension
v(Sj — II), 16 CQ. On the other hand {t^x, I)}Γ=1 consists of linearly
independent functions which, by their definition, satisfy the integro-
differential equation

Lt<(x, I) + [K(x, vMy, l)dy = Ufa I) .
JJ

Since tt(x9 I) is the domain of the maximal operator for L, we have,
by 3.iii, exhibited a basis for v(j — II).

At this point we will assume that the self-adjoint operator £f
has order n ^ 2. In case n = 1 slight modifications in the arguments
will be necessary since R<?(x9 y, I) will not, in that case, be continuous
as a function of (x, y). In case n :> 2, Theorems 4.v and 4.vi guarantee
that since R^(ϊ) is an integral operator of Carleman type with kernel
Rj?(xf V, I) continuous in (x, y), the operator .12̂ (1) shares this property.
Define the n x n matrix-valued function ψ(ϊ) = (ψij(ΐ)) by ψij(l) =

Cj, I), where c< is as in Theorem 3.iv.

THEOREM 5.iv. The n x n matrix function ψ satisfies:
( i ) ψ is analytic in Co,

(ϋ) [Ψθ)]*=ψφ9

(iii) (Im ̂ (I))/Im 1^ 0, Im

Proof, (i) Follows immediately from 4.vi.
(ii) Follows from BH(ci9 cjf I) = RH(cs, ci91).
(iii) We know from 3.v part v that (Im (RH(ΐ)h, h))/lml ^ 0.

Let z19 , zn be any complex numbers, and hm(x) be smooth functions
satisfying:

(a) Support of hm(x) c [ —1/m, 1/m], m — 1, 2, 3, ,

(b) j few(a?)da? = 1, m = 1, 2, 3, •

(c) K(x)^0,m = l,2, . . . .
Let fcm(a0 = Σ?=i ϊ̂̂ m(̂  — ct). Then for each m we have

Im (igg(I)few fe J = J_ [[[RH(x,y,l)-RH(x,y9ϊ)Ί
Iml ImlJJL 2i J

0 .

Since this last inequality is true for all m, and the kernels

RH(%, V, ϊ)> RH(X, y, ϊ) are continuous in (α, ̂ /) for 16 Co, we conclude

that

v _ Im RH(citei91) _ Λ Im^<y(I) - > 0
2 Zi% ΐ Z 2L Z Z Z&ύ vΐ Z 2 L k ZZ

I m l i,y=i I m l
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which is (iii).

THEOREM 5.V (Coddington). The matrix p defined by ρ(X) =

S x

lτaψ(v + iε)dv exists, is nondecreasing, and is of bounded
0

variation on any finite interval.
Proof. This theorem, which appears in Coddington [3], depends

only on the validity of 5.iv.
The function p(x) induces a matrix-valued measure in R. For

a development of this idea see Dunford and Schwartz [7].

VI* Eigenfunction expansions. Fix an extended basis {t^x, I)}*=1

as defined at the beginning of section five, and let J be a compact
interval which is contained in the set of I in the domain of t(x, I) =
(£I(B, I), •••,£«(&, I)) Observe that Theorems 3.iv and 2.vi guarantee
that if X ί Λ, then there is a basis {t^x, I)}?=i and an interval Δ as
above with XeΔ. Assume that the endpoints of Δ are continuity
points for EH(X), the resolution of the identity associated with H~

Define an operator R$) with kernel R^x, y, I) = t(x, l)φQ)t*(y,Ί).
Since t^x, I) may not be in L 2 ( ^ ) this kernel may not be of Carleman
type, but we do know that each tt(x, I) is continuous on every compact
subinterval of ^F. Our first goal is to prove that for f,ge C"{^),

(Eπ(Δ)f, g) = lim -M (Im R& + is)f, g)dv .
ε->+0 ft J//

It is well known that

(Es(Δ)f, g) = lim -ί ί (Im RH(v + ie)f, g)dv .

Let J be an interval with compact closure in ^ such that J contains
the union of the supports of / and g. By 2.vi and the compactness
of Δ there is a finite collection {Ha} of self-adjoint extensions of Sj
in L\J) such that Δ c \Ja p(Ha). Thus we can decompose Δ into a
finite collection of closed intervals Δβ with pairwise disjoint interiors
such that Δ — \JβΔβ and Δβ c p{Ha) for some a. Let Hβ e {Ha} satisfy
Δβ c p(Hβ). Note that we may choose the intervals Δβ so that their
endpoints are continuity points for EH(X) and EHβ(X). We assume
such a choice has been made.

For each β define an operator Gβ(ϊ) with kernel

Gβ(x, y, I) - Rβ(x, y, I) - Σ tt(x9 ϊ)Rβ(ei9 cj9 l)ts(y, ί) ,
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where Rβ(x9 y, I) is the kernel of the resolvent of Hβ. If I e Co and
x, y e J we know that

RΛx, V, I) ~ Gβ(x, y, I) - t(x, ΐ)Φβ(ΐ)t*(y, I) ,

where Φβ is some n x n matrix-valued function. The reasoning here
is exactly as that between 3.v and 3.vi. By construction Gβ(ci9 cj9 ΐ) =
0, so Φβ — (RH(cif ci91)) — ψ(I). Consequently,

(EH(A)f9 g) - lim ±- Σ [ (Im RH(v + iε)/, g)dv
ε-->+0 ft β Up

= lim A Σ ( (Im G / P + ie)/, flf)di;

+ lim — Σ ( (Im ^ ( v + is)f, g)dv .

We claim that limε_>+0 \ (ImG^v + ίε)/, g)dp = 0. To see this we
J Δ o

only need note that since Δβ c p(Hβ) the functions Rβ(x, y, I) and
t(x, ϊ) are analytic in a neighborhood of Δβ9 so our claim is a con-
sequence of Cauchy's theorem and the definition of Gβ(l).

We have now proved:

LEMMA 6.i. For f,ge C0

oo(^'), A a compact subinterval of R
where t(x, I) is defined, and assuming the endpoints of A are continuity
points for EH(X),

(EH(A)f, g) = lim - M (Im Rx(p + iε)f, g)dv .

Let Δ be as above, and recall that there is a matrix-valued

measure dp(v) defined on R, where p(p) = lime._+01/π \ Im+(λ+iε)dX.

If feC-(^) we will define a mapping / - » / from L ^ L \ d )

which can be extended by continuity to all of

THEOREM 6.ii. Let f e Co°°(.^). Define f(v) by

?(V) = \ f(*)t*(x, v)dx .

Then

EH(A)f = \ t(x, v)dp{v)f{v) = ( Σ tax, v)fk{v)dpάk{v) .

Moreover, [EH{A)fY — X*f, where XΔ is the characteristic function
of A.
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Proof. By 6.i

(EH{A)fy g) = lim -ί f ( I m R,(p + iε)f g)dv

ε->+0 7Γ J J

{Ψik(P + ie)(g, td(v - ie))(tk(v + is), f)

- ΨiJίv - ie)(g, tj(v + ie))(tk(v - ie), f))dv .

Picking up the [reasoning in Coddington [3] (following 4.2) we can
evaluate the limits and get the first assertion of the theorem.

The second assertion, that the transform of EH(Δ) is multiplication
by the characteristic function of Δ, is proved in Coddington and
Dijksma [6] in their Theorem 6.5. It runs as follows. For f,ge
Ct{^) we have

{EH{Δ)f, g) = {E^ΔJf, g) = (Xj, g)

where this last inner product is in L\dp). Thus \EH(Δ)fY = XΔf + ζ
where ζ is orthogonal to the image of L\^) under the mapping ^ .
But

) - (xj, f) = \\xj\\*

implies that ζ = 0.

There are now two ways in which we can prove eigenfunction
expansions. Let Ω be the set of v e R for which t(x, I) is not defined.
If we define f(p) as above for veR\Ω, then as in θ.iii we will get
a representation for E(R\Ω), and we can handle E(Ω) separately.
The other possibility is to represent E(R\Λ) by writing R\Λ as the
union of sets Δ as above with pairwise disjoint interiors, and repre-
senting the projections E{Δ) by using different bases t(x, ΐ) and
different measures dp(v) for each interval Δ. We elaborate on the
former approach.

THEOREM β.iii. Let H = Sf + JίΓ as above. Then:
(1) There is a function t(x9 v) = (tfa, v), , tjx, v)) such that
(a) t(x, v) is defined for v 6 R\Ω where Ω is a closed countable

set, and where defined

Lt(x, v) + \ K(x, y)t(y, v)dy = vt(x, v) ,

(b) for all x e , / and all veR\Ω, t(x, v) is analytic in a neigh-
borhood of v,

(2) there is a matrix-valued function p(v), veR, which is
nondecreasing and is of bounded variation on compact subsets of R,
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(3) if /<» = \ t*(x,v)f(x)dx, and if f eR(E(R\Ω)), then

f(x) = t(x, v)dp{v)f{v) ,
JR\Ω

( 4 ) the mapping f —> / is an isometry from R(E(R\Ω)) into
L\dp), ^

( 5 ) if fe D{H) n ̂ {E{R\Ω)), then Hf{v) = vf(v),
( 6 ) if 6)6 Ω, then dimension &(E(ω)) < oo ? and if ω e (Ω\A)

then dimension &{E{ω)) <̂  n.

Proof. We have already established (l.a) in Theorem 3.iv, while
(b) follows easily from 5.i and 5.ii. Part (2) is simply a restatement
of 5.v, and (3) is immediate from θ.ii, as is (4). Theorem 6.ii also
gives us the second part of (6), that is dimension R(E(ω)) <J n if
ω e (Ω\A). The other half of (6) follows quickly once we observe that
every eigenfunction for H must satisfy the differential equation
Lφ — Xφ on J^\JS.

To prove (5), note that lΔHf — [EH(A)HfY for all compact inter-
vals Δ in R/Ω. Now for any compact interval Δ the operator EH{Δ)H
is bounded. Find a sequence fn e Cj°(^) such that /w—>/. Since
each fn e D(Sj) for some J we have Hfn(v) = vfjp). Thus

= [EH(Δ)HfT = lim [EH(Δ)HfX
n-*co

= lim L M

Since J was an arbitrary compact interval in i?\β, we are done.

THEOREM 6.iv. J/ zf is as above, then the mapping f—> f from
R(EH(Δ)) —> L\Δ, dp) is onto.

Proof. We modify part of the proof of Coddington and Dijksma
[5], Theorem 6.5. Since the mapping is isometric we only need show
the range is dense. Suppose that ζ e L2(Λ, dp) is orthogonal to the

image of ^ . Then for all / 6 L\J?) we have (ζ, E^Δ)f) = 0, or

0 = (ζ, 1J) = ^(ί(α?, v), f(x))dp{v)ζ{v) - 0 .

This means that if δ is a subinterval of A, then

0 = ((t(x, v), f(x))dp(v)ζ(v) .

Let hitn(x) be a sequence of smooth nonnegative functions with integral
one and support in [c% — 1/n, c% + 1/ri], n = 1, 2, 3, . Then we have
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0 = ί (t(v), Kn)dp{v)ζ{v) .
Jδ

Let δ,, = 1 if i = j , and zero otherwise. Since (t(v), hitn)-*

@uf $2i, m t O uniformly in Δ, we conclude that 0 = I dp(v)ζ(v) for

all intervals d c Δ, which implies that ζ = 0.

THEOREM 6.V. Let L~ — D2 + q(x), where qeL?0C(^) is real,
and let Sj and J be as before. If 3ίΓ is compact, then Sj has
finitely many eigenvalues.

Proof. Let £f be a self-ad joint realization of L on L2(J). Suppose
that Xk 6 σ(Sj) Π p(£f) If Φk is a corresponding eigenf unction of norm
one we have

+ 3ίr)φk = xkφk, or φk = -

Since £f is self-adjoint,

- XJΓ\\ \\Kφk\\ =
dist fa*, σ(£f))

Since ^ίf is compact we can conclude that as k —> <>o the distance
between the eigenvalues of Sj and the spectrum of <Sf must approach
zero.

Since this statement is independent of £fy our conclusion is valid
if we can find two self-adjoint realizations of L whose spectra are
uniformly separated off a compact set. For the cited Sturm-Liouville
operators this is possible. See for instance Levitan and Gaszmov
[10], page 23, where asymptotic estimates for the eigenvalues of
these operators are given in terms of q(x) and the boundary conditions.

VII. An example* Our restriction that K{x, y) have compact
support in ^ x ^ is a severe one, so we address ourselves to the
question of what happens when this condition is relaxed. One of the
results of Theorem β.iii was that every eigenvalue of £f + 3ίΓ had
finite multiplicity. We will construct a bounded perturbation of a
differential operator which is self-adjoint and which has a dense set
of eigenvalues on the interval (— oo, —1), each of infinite multiplicity.

First some preliminaries. Recall that the essential spectrum of
an operator £? is {XeC\R(^f — XI) is not closed}. If L is a formal
differential operator, we define the essential spectrum of L to be the
essential spectrum of the minimal operator for L. From Dunford
and Schwartz [7], page 1436, we have the following.

LEMMA 7.i. Let L be a formal differential operator in κJ^~. Then
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λ is in the essential spectrum of L if and only if there is a bounded
sequence {fn} of functions in the domain of the minimal operator
T corresponding to L and L\^) such that {{L — λ)/n} converges in

but (/J has no strongly convergent subsequence.

LEMMA 7.H. Given Γ, L and {/J as in Lemma 7.i and λ in the
essential spectrum of L, there is a sequence {gn} in D(T) such that
HflrJI - 1 and \\(L - X)gn\\ -+ 0.

Proof. Since {fn} is not Cauchy there is some δ > 0 such that
for all positive integers N there are k(N), m{N) such that k(N),
m(N) > N and \\fk{N) - fmiN) \\>δ. Define hN == fHN) - fm{N). We then

have δ < \\hN\\ and {hN} is bounded. Simply define gN — hNj\\hN\\.

To construct our example we will choose L — D2 on L\R). It
is known that the essential spectrum of L is {λeϋJlλ^O}. Since
the minimal operator is the closure of L restricted to C~{R) we can
find, for λ < - 1 ,

( * ) fλeC?(R) such that | |/,| | - 1 and \\(L - X)fλ - / , | | 2 < λ .
4

Now observe that if fλ(x) satisfies (*), so does fλ(x + t) for all t e R.
We proceed as follows. For k a prime integer define kZ = {kz\z

a positive integer}. Choose an enumeration of the rationals less than
— 1, denoted by {qn, n = 1, 2, •••}. Find bisections bk from D(bk) =
kZ\{\JnnZ\n is prime and less than k] to {qn}. Now define a mapping
b from the integers greater than or equal to 2 to {qn} by b(m) —
bk(m) if meD(bk). We then have a function from the integers to
the rationals such that every rational less than — 1 is the image of
infinitely many integers. Define Xt = δ(ΐ).

Now find fλl satisfying (*). Define Kγ: L\R) -> L\R) by K,g =
-(L-λOACflf, (^-λΛ/y/C/^, (L-λJ/^). Since \\(L-\)fh-fh\\*<l/4
we have

or

so that
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Thus HiΓJI ^ 2||(L - λJ/ JI2 ^ 2-(9/4) ^ 5 by the triangle inequality.
Now inductively define Kn exactly as Kt was defined, replacing λx

by λΛ, /^ by / j n , and insisting that the functions fλl, i Sin, have
pair wise disjoint supports. We can insist on this last condition
because of the remark immediately following (*). Define an operator
K by Kf — ΣϊU K f If w e choose an orthonormal basis for U(R)
which includes {(L — λt)/λJ, then the matrix representation for K is
diagonal, and each diagonal entry had absolute value bounded by 5.
If the functions fλ. are chosen real, then K is obviously self-adjoint
and ||ίΓ|| ^ 5 .

Now notice that L + K can be realized as a self-adjoint operator
of L\R)f but if μ e {gj, then μ is an eigenvalue of L + K oΐ infinite
multiplicity.
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