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A space in which compacta are uniformly regular Gg is
said to be ostratifiable. This concept turns out to be
important in many reasons: c-stratifiability is a necessary
and sufficient condition for regular wΛΓ-spaces to be Nagata,
for regular w; -spaces to be γ and for semimetrizable spaces
to be Z-semimetrizable. As applications, it is shown that
a completely regular pseudocompact space is metrizable and
that ϋΓ-semimetrizable spaces are characterized by having
semi-developments with the 3-link property.

The most important generalized metric spaces are Moore spaces,
Nagata spaces and 7-spaces. Hodel and Kodake proved that being
an α-space is a necessary and sufficient condition for regular wΔ-
spaces to be Moore, for regular wi\Γ-spaces to be Nagata. We will
show that c-stratifiability plays the same role as a for wN and
wy. Spaces with regular Gδ-diagonal are c-stratifiable is proved
using Zenor's characterization. Completely regular pseudocompact
c-stratifiable spaces are 7. If a space has a semi-refined sequence
or semi-development with the 3-link property, we can define a
symmetric or semimetric in the usual way to show that such a
symmetric or semimetric is characterized by d(Klf K2) > 0 for dis-
joint compacta Kx and K2. Since the 3-link property concerns with
convergence of sequences, it is not surprising that the property is
characterized by a concept of compactness. Going up to develop-
ment with the 3-link property, we get a iΓ-semimetric under which
each point has arbitrarily small neighborhoods. The main method
in this paper is another characterization of c-Nagataness ( = first
countable c-stratifiable) by a countable open covering map g: If
g(n, x) Π g(n, xn) Φ 0 for each n, then x is a cluster point of the
sequence {xn} if there are any.

For a subset S of a space, we will denote the closure of S by
S~. For a point x and a sequence {xn}, (xn) will denote the point
set {x19 x2, x3f •} and (x, xn) will denote the set {x, xlf x2, xΛf •}.
Cp{xn} denotes the set of all cluster points of {xn}.

The author wants to express his thanks to refree for many
helpful suggestions to revise this article.

1* c-Nagata spaces* Let X be a space and g a function from
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N x X into the topology of X such that xe Π {g(n, x):neN} for
each xeXand the g(n + 1, x) cg(n, x) for each n and a. Note that
if we let 7» = {flf^ajJ weΛ"}, then {7i, 78, 78, •••} is a sequence of
open covers of X such that 7n+1 refines 7Λ. Thus we call such a
function a GOC-map ( = countable open covering map). For any subset
S of X, we denote #(%, S) = U {0O, α): a; e S}.

Let Sΐ and S3 be some families of subsets of X. g is said to
separate (separate regularly) S3 from 81 if, for each A 6 81 and B e
S3 disjoint, there exists n e N such that Af)g(n, B)=0(An g{n, B)~ =
0) . Consider the following conditions on g.

A. g separates closed compact sets from points,
B. g separates closed sets from points,
C. g separates points from closed sets,
D. g separates compact sets from closed sets,
E. g separates closed sets from compact sets, and
F. g separates regularly closed sets from points.
In [16] Martin defined c-semistratifiable spaces by A; Semi-

stratifiable spaces [5] is characterized by B; C is the definition of
first countable spaces; In [13] 2\, y-spaces are characterized by D,
which is precisely coconvergent spaces [20]; It is easily verified that
k-semistratifiable spaces [14] can be characterized by E and that
stratifiable spaces [2] by F.

We now introduce a new class of spaces which shares similar
properties to these spaces.

DEFINITION. A ϊ\-space is said to be c-stratifiable if it has a
COC-map that separates regularly compact sets from points. A
space is c-Nagata if it is c-stratifiable and first countable.

From the definition, every compact set in a c-stratifiable space
is a regular Gδ. Conversely, let X be a 2\-space such that: For
each compact K, there exists a decreasing sequence {Kn} of open
sets with the properties

(1) K= ΠneN Kn — ΓinBN K~ ίox each compact K, and
(2) If K and H are compacta with KaH, then Kn c Hn for

every n. Define a COC-map g by g(n, x) = {x}n. Then g is a COC-
map that separates regularly compacta from points. Thus X is c-
stratifiable.

Note that every Nagata space is c-Nagata and that every
c-stratifiable space is c-semistratifiable. A c-stratifiable space is
Hausdorff. But there exists a nonregular, nonperfect c-stratifiable
space as 6.2 shows. This distinguishes c-stratifiable spaces from
stratifiable spaces and from semistratifiable spaces. As can easily
be shown, c-stratifiability is hereditary, countably productive.
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LEMMA 1.1. A GOG-map g separates regularly T from compacta
if g separates regularly T from points.

Proof. Suppose g separates regularly T from points. Let K
be a compact set disjoint from T. For each x in K, there exists
n(x)eN such that x£g(n(x), T)~. This implies that {X — g(n(x),
T)~: x e K} forms an open cover of the compact set K. Let {X —
g(n(x%), T)~: Xi e K, 1 <: i <̂  k] be a finite subcover of K, and n =
max {n(xt): l<*i<,k}. Then Kf] g(n, Γ)" = 0 .

LEMMA 1.2. A first countable GOG-map g for a T^space sepa-
rates closed sets (compact sets, points, respectively) from compact a
if and only if g separates regularly closed sets (compact sets, points,
respectively) from points.

Proof. First we show that a TV-space which has a first count-
able COC-map g separating points from compacta is Hausdorff.
Assume there are distinct points x and y such that g(n, x) Π g(n, y) Φ
0 for each n. There exists a sequence {xn} which converges to
both x and y. We may assume y£(xn)- The point y cannot be
separated from the compact set (x, xn). This contradiction shows
that the space is Hausdorff.

Assume there exists a subset T and a point peX — T such
that p e g(n, T)~ for every n. If g(n, p) Π g(n, T) — T = 0 for
infinitely many n, then g(n, p) Π T Φ 0 for infinitely many n, and
hence p e T~ = T if T is a closed (compact, singleton) set. Thus
we can choose yn e g(n, p) Π g(n, T) — T. Then T cannot be separated
from the compactum (p, yn). The converse is clear from 1.1.

COROLLARY (Lutzer). A first countable k-semistratifiable Tr

space is stratifiable.

THEOREM 1.3. The following conditions on a first countable
GOG-map g for a Trspace are equivalent:

(1) g separates regularly compacta from compacta,
( 2) g separates regularly compacta from points,
( 3 ) g separates compacta from compacta, and
(4 ) If g(n, x) Π g(n, xn) Φ (ΰ for each n, then Cp{xn) c {x}.

Proof. By virtue of 1.1 and 1.2, it suffices to show that (3) <=>
(4).

Let g satisfy the third condition and let g(n, x) Π g(n, xn) Φ 0
for each n. If z e Cp{xn} with z Φ x, there exists a subsequence
{xn.} of {xn} converging to z. Let {yn} be a sequence such that yn e
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g(n, x) fΊ g(n, xn) for each n and that (yn.) is disjoint from (xn.).
Now the compactum (z, xn.) cannot be separated from the compac-
tum (x, yn.).

Conversely, suppose g satisfies the fourth condition. Assume
there exist disjoint compacta Kx and K2 such that K2 cannot be
separated from Kx. Choose a point xn in Kx Π g(n, K2) for each n.
Let xeCp{xn}. Then xe f) {g(n, K2)~:ne N}. This implies that
there exists a sequence {yj in K2 such that g(n, x) Π gin, yn) Φ 0 .
Since Cp{yJ Π K2 Φ 0 , x is the unique cluster point of {yn} which
belongs to K2. This implies KXV\K2Φ 0 . This completes the
proof.

2* Nagata spaces and 7-sρaces* A space is called a wN-space
[9] if it has a COC-map g such that: If g(n, x) Π g(n, xn) Φ 0 for
each ne N, then Gp{xn) Φ 0 . Similarly, a space is called a wi-
space [9] if it has a COC-map # such that: If xn e gin, yn) and yn e

, x) for each neN, then Cp{£J ^ 0 .

Martin [16] shows that a regular c-semistratifiable wz/-space is
developable, and Hodel [9] proves that a Hausdorff 7, wiV-space is
metrizable. Since there exist nonmetrizable Nagata spaces, the
condition being 7-spaces in HodeΓs proposition cannot be weakened
to c-Nagataness. However, as the following lemmas show, c-Nagata-
ness is a necessary and sufficient condition for wiV-spaces to be
Nagata, and for WΊ to be 7.

LEMMA 2.1. A space is Nagata if and only if it is a c-Nagata
wN-space.

LEMMA 2.2. A Hausdorff space is 7 if and only if it is c-
Nagata and w7.

Proof. By Theorem 2.1 of [13], a 7-space has a COC-map which
separates compacta from closed sets. But a Hausdorff space which
has a first countable COC-map that separates compacta from com-
pacta is c-Nagata by 1.3. These imply that Hausdorff 7-spaces are
c-Nagata.

Conversely, let g be a first countable COC-map for a Hausdorff
space satisfying the fourth condition of 1.3 and the condition of
WΊ. Let xn£g(n,yn) and yneg(n,x) for each n, and let zeCp{xn}.
There exists a subsequence {xn.} of {xn} such that xn. e g(i, z) for
each i e N. Thus xn. e g{i, z) Π g(ni9 yn.) c g(i, z) Π g(i, ynί) for each
ieN, from which it follows that Cp{yn.} <z{z}. Since g is a first
countable COC-map, {yn} converges to x. Thus we have z = x.
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If a ΪV space has a COC-map that separates compacta from
closed sets, the COC-map separates compacta from points. This
implies that every Tl9 7-space is c-semistratifiable. But such a space
need not be c-stratifiable as 6.3 shows.

COROLLARY. Every Nagata wy-space is metrizable.

Proof. A Nagata wγ-space is a 7-space by 2.2. Now apply
[9, Theorem 4.3].

A regular wJ-space is developable if it is a, and a regular
wiV-space is Nagata if it is a. A natural substitute for a in the
case of wN and WΎ is c-stratifiability as seen in the following.

THEOREM 2.3. (1) A regular space is Nagata if and only if
it is a c-stratifiable wN-space. (2) A regular space is 7 if and
only if it is a c-stratifiable wj-space.

Proof. Note that a wiNΓ-space or a w7-space is a g-space [19]
and that each point is a Gδ in a c-stratifiable space. Lutzer showed
that a regular g-space in which each point is Gδ are first countable.
The result follows from 2.1 and 2.2.

3* Spaces with regular Gδ-diagonals* A space is said to have
a Gδ(k)-diagonal if it has a sequence {2)x, 2)2, 2)3, •••} of open covers
such that: For any distinct two points x and y, there is n such
that y ί stk(x, 2)J. (τXl)-diagonal coincides with Gvdiagonal. A
space is said to have a regular Gδ-diagonal if the diagonal of XxX
is a regular Gδ-set in the product space. For more properties of
these, see [2, 10, 16 and 21].

LEMMA 3.1 {Zenor). A space X has a regular Gδ~diagonal if
and only if there is a sequence {yn} of open covers of X such that
if x and y are distinct points of X, then there exists an integer n
and open sets U and V containing x and y respectively such that
no member of Ίn intersects both U and V.

PROPOSITION 3.2. Any space with a reqular Gδ-diagonal is c-
stratifiable.

Proof. Let {7j be a sequence of open covers of a space X
metioned in 3.1. We may assume that each yn is refined by 7»+i
Define a COC-map g by g(n, x) = st(x9 7 j . Let a compactum K and
a point p e X — K be given. For each x e K, there exists an integer
n(x) and open sets U(x) and V(x) containing p and x, respectively,
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such t h a t U(x) Π st(V(x), Ίn{x)) — 0 . Since K is compact, we can

find a finite number of points xlf x2, •••,% of K such t h a t {Vfa):

i — 1, 2, , k) covers K. Let n — max {nfa): i = 1, 2, •••,&}, and

C7 = n {Ufa): i = 1, 2, ••-,&}. Then C7 n βtOBΓ, 7 J = 0 . That is,

UΠ g(n, K) = 0 . This implies pi gin, K)~.

4* Pseudocompact spaces* A space X is pseudocompact if
every real-valued continuous function on X is bounded. The follow-
ing characterization of completely regular pseudocompact spaces is
well known.

LEMMA 4.1. Let X be a completely regular space. X is pseudo-
compact if and only if for every sequence G1 c G2 c G3 c of non-
void open subsets of X, Γ\neNGή Φ 0

In [18], it is proved that a completely regular pseudocompact
space with a regular (τδ-diagonal is metrizable. Even though the
condition that the space have a regular Gδ-diagonal cannot be
weakened to c-stratifiability (see 3.2) as shown in 6.6, we are able
to prove the following.

THEOREM 4.2. Completely regular pseudocompact c-stratίfiable
spaces are 7.

Proof. Let g be a c-stratifiable COC-map for a completely
regular pseudocompact space X, and K a compact subset and G an
open set containing K. Assume g(n, K) Π (X — (?) Φ 0 for every
n. Since X is regular there is an open set H such that KczHa
H~ c G. Then {g(n, K) Γ\ (X — H~): neN} is a decreasing sequence
of nonvoid open sets so that 0 Φ ΓϊneN {g(n, K) f) (X — H~)}~ c
ΓϊneN 9(n, K)- n (X - H) = KΠ (X - H) = 0. This contradiction
implies that g separates compacta from closed sets. Thus X is a
T-space.

COROLLARY. A completely regular pseudocompact stratifiable
space is metrizable.

Proof. Note that a stratifiable space is c-stratifiable. Now
apply 4.2 and corollary to 2.2.

5* i£-symmetrics and semi-refined sequences of covers satis-
fing the 3-link property* Let X be a space and d a real-valued
nonnegative function defined on X x X such that dfa y) = d(y, x),
and dfa y) = 0 if and only if x = y. The function d is called a
symmetric [1] for X provided that a set MaX is closed if and
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only if d(x, M) > 0 for any x e X — M. The function d is called a
semimetric for X provided that for a set MaX, xeM~ if and
only if d(x9 M) = 0. In [1] and [15] it is proved that a space is
metrizable if and only if it has a compatible symmetric d such that
d(F, K) > 0 for any disjoint closed F and compact K. The follow-
ing condition on symmetries is due to ArhangeΓskii.

(K) For any disjoint compacta Kx and K2 in X, d(Kl9 K2) > 0 .

DEFINITION. A symmetric satisfying (K) is called a K-sym-
metric. Similarly, a semimetric satisfying (K) is called a K-semi-
metrίc [17]. A space is said to be iΓ-symmetrizable (if-semimetriz-
able) if it is symmetrizable (semimetrizable) via a iΓ-symmetric
(if-semimetric).

We can no longer claim that a iΓ-symmetrizable space is metri-
zable even if it is paracompact. ArhangeΓskii's conjecture saying
that every symmetrizable space is i£-symmetrizable seems to be
unsolved yet. It is known that a paracompact semimetric space is
iΓ-semimetrizable.

A sequence 7 = (Ύ19 72, 73, ) of covers of a space X such that
each yn+1 refines 7* is called a semi-refined sequence of covers [3] if
2B3 = {st(x, yn): n 6 N} forms a weak-base [1], a semi-development if
it is a semi-refined sequence of covers such that each st(x, τ») is a
neighborhood of x, and a development if it is a semi-development
such that each 7» is an open cover of X.

A development 7 = (7X, 72, 73, •) for a space X is said to satisfy
the Z-link property [7] if it is true that for any distinct points x
and y, there exists an integer n such that no member of τ» inter-
sects both st(x, 7») and st(y, 7n). We generalize this concept to
arbitrary sequence of covers.

DEFINITION. Let 7 — (Ύ19 72, 73, •••) be a sequence of covers of
a space. 7 is said to satisfy the Z-link property if for any distinct
points x and y9 there exists an integer n such that y 0 stz(x9 yn).

Note that this definition coincides with the original definition
of the 3-link property for developments, and that a space has a
sequence of open covers with the 3-link property if and only if it
has a G,(3)-diagonal.

A continuously semimetrizable space is a Moore space that
admits a development with the 3-link property. A space admits a
development with the 3-link property if and only if it is a wz/-space
with a regular Gvdiagonal. A locally connected developable space
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with a regular Gδ-diagonal has a Z-semimetric d such that the space
is d-spherically connected, a locally connected rim compact space is
i£-semimetrizable if and only if it is a developable 7-space. See
[4], [17] and [21] for details.

The following three theorems show that the condition (K) has
a close relation to the 3-link property and the c-stratifiability.

THEOREM 5.1. A space X is Hausdorjf K-symmetrizable if and
only if it admits a semi-refined sequence of covers satisfying the
Z-link property.

Proof. Let d be a ϋC-symmetric for X. For each n, put τ» be
the set of all subsets of X with diameter less than 1/n. Then
d(x, y) < 1/n if and only if yest(x, 7 j . This implies that 7 = (yl9

Ύ2, T8, ) is a semi-refined sequence of covers of X. If there exist
distinct points x and y such that y e stf(x, 7 J for every n, there are
sequences {xn} and {yn} such that xn e st(x, 7 j , yn e st(y, 7») and yn e
st(xn, Ίn). We may assume (x, xn) Π (y, yn) = 0 with both sets
compact. But d((x, xn), (y, yn}) — 0, a contradiction.

Conversely, let 7 = (7i, 72, 73, •••) be a semi-refined sequence of
covers of X satifying the 3-link property. Define a symmetric d
by d(x, y) = 1/inf {j e N: x ί «ί(i/, 7 )̂}. From the definition d(α?, T/) <
1/^ if and only if x e st(y, yn). Assume there exist disjoint compacta
JSTJ. and K2 such that d(Ku K2) = 0. We can find two sequences {xn}
and {yn} in Kλ and ̂  respectively, such that d(xn, yn) < 1/n. Note
that X is sequential and Hausdorίf so that {xn} and {yn} have con-
vergent subsequences. Let {xn.} and {yn.} be subsequence of {ίcw} and
{yn} converging to x and y, respectively. Without loss of generality,
we may assume d(x, xn.) < 1/i and d(y, yn.) < 1/i for each isN.
Since d(xn., yn.) < 1/i, it follows that there is no k such that y £
sf(x, 7*). This contradiction completes the proof.

THEOREM 5.2. .For α space X, the following are equivalent:
(1) X is a semίmetrizable c-stratifiable space, (2) X is K-semimetri-
zable, and (3) X admits a semi-development with the Z-link property.
Furthermore, if the space is regular, each of these is equivalent to
(4) X is a c-Nagata β-space.

Proof. Note that spaces satisfying one of these conditions are
Hausdorff. In a semimetric space, any compatible symmetric is
actually a compatible semimetric. Also it is easily verified that
any semi-refined sequence of covers of a semimetric space forms a
semi-development. Applying these remarks to 5.1, we have (2) <=>
(3).
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For (1) <=> (2), let g be a semistratifiable, first countable, c-strati-
fiable COC-map for X. Define a semimetric d by d(x, y) = 1/inf {j e
N:x£ g(j, y) and y 0 g(j, x)}. Let Kγ and K2 be disjoint compacta.
By 1.3, there is me N such that Kx Π g(m, K2) = 0 and iΓ2 Π g(m,
K,) = 0 . It follows that d ^ , iζ) ^ 1/m > 0. Conversely, let d be
a i£-semimetric on X. Define a first countable COC-map g by g(n,
x) = Interior of 1/% sphere centered at x. It is easily verified that
g satisfies the third condition of 1.3.

For (4) note that a c-Nagata space is c-semistratifiable. Martin
shows that a regular c-semistratifiable /3-space is semistratifiable.

COROLLARY. A semistratifiable Ί-space is K-semimetrizable.

The following lemma is due to Alexandrov-Nemitskii and Morton
Brown. Analogous result for symmetries can be found in [12].

LEMMA 5.3. A Hausdorff space is developable if and only if
it is semimetrizable via a semimetric d satisfying one of the follow-
ing equivalent conditions: (1) Every convergent sequence is d-
Cauchy, (2) If {xn} and {yn} are sequences both converging to x,
then lim d(xn9 yn) = 0, and (3) (AN) Each point has a neighborhood
of arbitrarily small diameter.

THEOREM 5.4. For a space X, the following are equivalent:
(1) X is a wA-space with a regular Gδ-diagonal, (2) X is K-semi-
metrizable via a semimetric satisfying (AN), (3) X admits a deve-
lopment with the 3-link property, and (4) There is a semimetric d
on X such that: (a) If {xn} and {yn} are sequences both converging
to the same point, then lim d(xnf yn) = 0, and (b) If x and y are
distinct points of X and {xn} and {yn} are sequences converging to
x and y, respectively, then there are integers L and M such that
if n> L, then d(xn, yn) > 1/M.

Proof. Zenor proved the equivalence of (1), (3) and (4). (2)«
(4) is easy.

REMARK. In view of 5.3 and 5.4, one may conjecture that a
developable ϋf-semimetrizable space satisfies the above four condi-
tions. This can be rephrased as: If a space X satisfies one of the
following equivalent conditions, it satisfies the conditions of 5.4:
(1) X is semimetrizable via a semimetric satisfying (AN) and is K-
semimetrizable, (2) X is developable and admits a semidevelopment
with the 3-link property, and (3) X has two semimetrics satisfying
(a) and (b) of (4) in 5.3, respectively.
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If this were true, any developable space that does not admit
a development with the 3-link property would be semimetrizable
but not i£-semimetrizable. But we have an example (see 6.6).

6* Examples*

6.1. There exists a perfect, hereditarily Lindelof, hereditarily
separable 7-space which is not a /3-space. Such a space is c-strati-
fiable but not semistratifiable. The space of reals with the upper
limit topology.

6.2. There exists a Hausdorff 7-space which is neither regular
nor perfect. Such a space is c-stratifiable but not semistratifiable.
Let X be the space of all real numbers equipped with the topology
generated by a first countable COC-map g

[{x — 1/n, x + 1/n), if x is rational
Q(ΎL XS) '== Ί

\{x — 1/n, x + 1/n) Π (X — Q), otherwise

where Q denotes the rationale. It is easy to check this space is a
7-space. The point τ/~2" and the closed set Q cannot be separated
by disjoint open sets, which shows that X is not regular. By the
Baire Category Theorem, it is easily shown that Q is not a Gδ.

6.3. There exists a Tίf Y-space which is not Hausdorff and
hence, is not c-stratifiable. Let X = R U { — <», +°°}, where R is
the reals, with the topology generated by a first countable COC-
map g

'(x — 1/n, x + 1/n), if x e R ,

g(n, x) = •(-oo, -n)\J(n, +oo)u{+oo}, if aj= + oo ,

,(— oo, —n) U (n, + oo) u {— oo}, if χ= — oo .

Then g separates compacta from closed sets.

6.4. There exists a first countable Hausdorff wiV-space which
is not c-semistratifiable, and hence is not c-stratifiable. Let Ω be
the first uncountable ordinal, and consider the space [0, Ω) with
the order topology. Since it is countably compact, it is a wN-
space. Now Corollary 5 of [16] ensures that this space is not c-
semistratifiable.

6.5. Nonmetrizable Nagata spaces ([2], Examples 9.1 and 9.2)
are c-stratifiable spaces which are not vrr. See corollary to 2.2.
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6.6. The space W of [6, 51] is completely regular, pseudocom-
pact, c-Nagata and developable but does not have a regular Gδ-dia-
gonal, and hence is not metrizable. See the remark following 4.1,
4.2, 5.3 and 5.4. We define a COC-map g for Ψ as follows. g(n, a?) =
{x} for every n e N and for every xeN. Note that for each point
β)E, there corresponds an infinite sequence E — {xlf x2, x3, •••} of
distinct natural numbers. Let gin, ωE) = {xnf xn+u xn+2, •}. Since
any compact set can contain only finitely many points of D, we can
easily verify that g separates regularly compacta from points.
That is, Ψ is e-stratifiable. Also, g satisfies: If x, xn e g(n, yn) for
each n, then {xn} converges to x. This is a characterization of
developable spaces proved in [8].
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