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BOREL BOXES

DOROTHY MAHARAM AND A. H. STONE

This note gives a simple necessary and sufficient condi-
tion for a box, in a product of uncountably many metrizable
spaces, to be a Borel set.

Throughout, X = ~[[{Xa:aeA} where A is an uncountable index
set and each Xa is a nonempty topological space; X is given the
usual product topology. The αth co-ordinate of a point x of X is
denoted by xa(aeA). A sub-product ϊl{Xa: aeB}, where BczA, is
denoted by I ΰ . A set of the form Y = JJ{Ya: aeA}, where
YaczXa for each aeA, will be called a "box" in X. The object of
this note is to point out that, when each Xa is metrizable, there is
a surprisingly simple characterization of the boxes that are Borel
subsets of X. We require the following three lemmas, of which
at least the first two are well known. (See for instance [2].) The
third is a special case of our main result.

LEMMA 1. Suppose each Xa is a separable metrizable space.
Then each Baire set E in X is of the form EQxXA-B, where B is a
countable subset of A and Eo is a Borel subset of the countable
product XB. Conversely, each set of this form is a Baire subset
of X.

LEMMA 2. Again suppose each Xa is separable and metrizable.
Then, given a Borel set D in X, there exist Baire sets V, W in X
such that VczDcW and W — V is meagre (in X).

LEMMA 3. Suppose each Xa is compact and metrizable, and pa

is a nonisolated point of Xa(aeA). Define

D = {x 6 X: for all a eA,xaΦ pa) = Π {Xa - {2>«}: aeA}.

Then D is not Borel in X.

Proofs. When £ is a cozero set, the assertion of Lemma 1
holds by [3], and the general case follows. The converse is elemen-
tary.

When D is open, the assertion of Lemma 2 holds; it suffices to
take V = union of a maximal collection (necessarily countable) of
pairwise disjoint nonempty elementary open sets contained in D (as
in [3]), and W — V. Since the family of sets D for which Lemma
2 holds is a Borel field, it includes all Borel sets.
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In Lemma 3, suppose D is Borel, and apply Lemma 2 to obtain
Baire sets V, W with VaDaW and W — V meagre. By Lemma 1,
V = Vo x XA-B where B is a countable subset of A. If V Φ 0 , pick
#e F and define xeX by:

Xa — Qa if α e J5; #α = pα if α 6 A — B .

Since A is uncountable, xgD. But a; e Vo

 χ-X^-JB = VaD, a cont-
radiction. This shows V = 0 , and therefore W is meagre.

On the other hand, DaW = Wox XΛ-0 for some countable CcA.
We have Π {X - {ί>.}: α 6 C}aW0, so that Z c - Wo c U i W x I o - u h
αeC}, a countable union of closed subsets of Xc that are nowhere
dense in Xc (because pa is not isolated in Xa). Thus Xc — WQ is
meagre in XCf whence X — W is meagre in X. Since ΐ'F also is
meagre, X is meagre, contradicting Baire's theorem.

THEOREM. Let Y = Π« Ya be a nonempty box in X — ]JaXa,
and suppose each Xa is a first countable Hausdorff space. Then Y
is a Borel set in X if, and only if,

( i ) for all a e A, Ya is Borel in Xa9

(ii) for all but at most a countable set of a's, Ya is closed in
χa.

Proof. Put B = {aeA:Ya is not closed in Xa}. Assuming (i)
and (ii), we have that B is countable, and Y = Ex]${Ya:aeB}
where E — ]J{Ya: ae A — B} is closed in XA-B and each Ya is Borel
in Xa. As a countable product of Borel sets, Y is Borel.

Conversely, suppose Y is Borel in X. It is easy to see that (i)
holds, and that the sub-product YB = Π {Ya> αeJ3} is Borel in XB.
Suppose (ii) is false, so that B is uncountable. For each beB, pick
pbe Ϋb — Yb and pick a sequence of points qbu qb2, •••, of Yh, distinct
from pb and from each other, converging to pb. Put Zb = {qbn: n —
1, 2, •••}, Tb = Zb{J{pb}. Thus Γ6 is a compact metric space (homeo-
morphic to the subspace {0, 1,1/2, , 1/n, •} of the real line), and
pb is a nonisolated point of it. Write ZB — ]J {Zb:beB}, TB=
Π {Γ6: δe JB}; then ZB = r £ n T5, where Tβ is closed and ΓB is Borel
in Xΰ. Thus ZB is Borel in Xβ. But ZB = {ί e TB: for all fe e J5,
t6 ^ p j , so that Lemma 1 is contradicted. Thus (ii) holds, and the
proof is complete.

COROLLARY 1. If Y is a box in X = IL Xa, where each Xa is
a separable metric space, then Y is Borel in X if, and only if, Y
is a Baire set relative to its closure Ϋ in X.

(From the theorem and Lemma 1.)
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COROLLARY 2. Suppose, for each aeA,Xa and Xά are non-
empty separable metric spaces and fa is a Borel isomorphism of Xa

onto X'a. Then ΓLΛ is a Borel isomorphism of X onto X'( = ΐlaX!)
if, and only if, fa is a homeomorphism for all but (at most) count-
ably many a's.

The "only if" in Corollary 2 is a straightforward deduction
from the theorem. The "if" is an easy consequence of the theorem
and the following lemma.

LEMMA 4. // (for i = 1, 2) gi is a Borel measurable map from
Zi to Z\, and if at least one of the spaces Z[, Z'2 has a countable
base, then g^g2 is Borel measurable.

Proof. Let Vlf V2, , be a countable base for (say) Z[. It is
easy to see that an open set G in Z[xZ'z can always be written in
the form G = \J{(Unx Vn): n = 1, 2, •}, where Uu U2, , are suit-
able open sets in Z[. From this it is clear that (gt x g2)~\G) is a
Borel set in ZxxZ2.

It would be interesting to know whether the separability hy-
pothesis can be dropped in Corollary 2. It is not needed for the
"only if" part of the corollary, and it is at least relatively consist-
ent that separability is unnecessary for the "if" part. This is be-
cause the appropriate variant of Lemma 4 (with Z2, Z'2 both metri-
zable, though not necessarily separable) holds in a model of set
theory given by Fleissner [1],
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