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Let (X, %, m) be a probability measure space and 4 a
subalgebra of L“(m), containing the constant functions.
Srinivasan and Wang defined A to be a weak-*Dirichlet al-
gebra if A + A (the complex conjugate) is weak-*dense in
L>(m) and the integral is multiplicative on A, \fgdm =
Sfdm gdm for f, g€ A. In this paper the notion of extended
weak-*Dirichlet algebra is introduced; A is an extended
weak-*Dirichlet algebra if A+ A is weak-*dense in L“(m)
and if the conditional expectation £< to some sub s-alge-
bra < is multiplicative on A. Then most of important
theorems proved for weak-*Dirichlet algebras are generalized
in the context of extended weak-*Dirichlet algebras, for in-
stance, Szegi’s theorem and Beuring’s theorem. Besides, our
approach will yield several theorems which were not known
even for weak-*Dirichlet algebras.

1. Introduction. This paper presents a generalization of a por-
tion of the theory of analytic functions in the unit dise. The theory
to be extended consists of some basic theorems related to the Hardy
class H?» (1 £ p < «). For example, (i) the theorem of Szego, on
mean-square approximation of 1 by polynomials which vanish at the
origin, (ii) Beurling’s theorem on invariant subspaces of HZ, (iii) the
factorization of H? functions into products of “inner” and ‘“outer”
functions, (vi) Jensen inequality. The paper was inspired by the
work of Srinivasan and Wang [13]. They introduced weak-*Dirichlet
algebras for a generalized analytic function theory. Suppose 4 is
an extended weak-*Dirichlet algebra of L* = L*(m), defined in the
abstract. The abstract Hardy spaces H? = H?(m), 1L < p < «, as-
sociated with A are defined as follows. For 1 < p < o, H? is the
L? = L*(m)-closure of A, while H” is defined to be the weak-*closure
of Ain L. In operator algebras, A is called a subdiagonal algebra
by Arveson [1]. Independently by the author [12], A is called an
algebra on which m is quasi-multiplicative, in the study of invariant
subspaces of weak-*Dirichlet algebras [12].

Let B be the algebra of continuous, complex-valued functions on
the torus T = {(z, w)€C* |z| = |w]| = 1} which are uniform limits
of polynomials in z"w™ where (n, m) € {(n, m) € Z*; m > 0} U {(n, 0) € Z*%
n = 0}. Denote by m the normalized Haar measure on T?, then B
is a weak-*Dirichlet algebra of L*. Set A = UJy-,%"B, then A is not
a weak-*Dirichlet algebra of L™, but it is an extended one. When
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57 is the o-algebra of all Borel sets on 7% let <& be the sub o-
algebra of .o consisting of all Borel sets of the form K X T where
E is a Borel set on T. Let E“ denote the conditional expectation
for <% We show, if fe B, then

Sﬁlog \f | dm = STzlog \E=(f) | dm = log|ST2fde ,

There exists f in B such S log|Eﬁ(f)]dm>logH fdm' Let
we L', w=0. Even if | logwdm = — <, if L (logw)> — <« a.e.,

then there exists f in H 2(]5’) with w = | f|* where E“(log w) is defined
by lim E“{log (w + ¢)}. Set I = {1 2"B, then

inf S [1 — g Pwdm = S ,eXp EZ(log w)dm .
72 T

gel

2. Extended weak-*Dirichlet algebras., We define an extended
weak-*Dirichlet algebras formally.

DEFINITION 1. Let (X, .o m) be a probability measure space.
Let E 7 denote the conditional expectation for the sub o¢-algebra <%
of .7 An extended weak-*Dirichlet algebra is an algebra of L™ =
L>(m) such that (i) the constant functions lie in A4; (ii) A + 4 is
weak-*dense in L~; (iii) for all f and g in A, E“(fg) = EZ(f)E7(g);
(iv) E7(A) S AN A.

When E“(A) = {1}, the space spanned by 1, then EZ(f) = S fdm
for f in A, and hence A is a weak-*Dirichlet algebra. For 1 gX p=
o, let I" = {fe H?: EZ(f) = 0} and let I = {fe 4: E<(f) = 0}. Sup-
pose 1 £ p < . For any subset M c L?, denote by [M], the L*-
closure of M (weak-*closure for p = <). For any measurable subset
E of X, the function X, is the characteristic function of E. If
felr (1 < p £ o), write E(f) for the support set of . The following
lemma is well known [10] and the proof is easy.

LEMMA 1. For 1< p £ oo,
S | E=(f) 1" dm < S flPdm  felr.
X X
For fin L, || EZ(f)|le £ || flle, wherel| ||, i3 an essential sup-norm
wn L=, Movreover E¥ is a weak-*continuous limear operator from L~
wnto L,

LEMMA 2. For 1 = p < oo, E7(H?) = [E7(4)], and I" =[I],.
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The proof is clear by Lemma 1.

PROPOSITION 1. Suppose 1 < p £ oo,
(1) I is an ideal of A and I* is a closed (for » = o weak-*closed)

wnvariant subspace of L*.

(2) I 78 a maximum tdeal with the property that if J is an
ideal of A which contains I, then J = EZ(J) + I and EZ(J) is an
ideal of EZ(A).

(83) I* is a maximum invariant subspace with the property that
if J? is a closed invariant subspace of H? with I* S J? Z H?, then
J? =X EF(H?)DI* = XzH* D (1 — yz)I? where Xz belongs to [EF(A)].,
and @ denotes algebraic direct sum.

4) I (or I”) is @ maximum ideal of A (or H™) which s con-

tained in A, = {fe A: Sxfdm - 0}(m~ Hy = {fe H" Sdem - 0}).

Proof. Since E®(fg) = E#(f)E#(g) for all f and ¢ in 4, (1) is
clear.
(2) It is clear that if J is an ideal of A which contains I, then

J=FE*J)+ 1 and E#(J) is an ideal of E®(4). Suppose I' is an
ideal with the above property, then ker E# |, 1. E®(I') + I2TI
and EZ(I")+1I is an ideal of A. By the assumptionon I', E*(I")+I=
EZ(IY + I" and hence E¥(I') + I = I'. Thus I' 21.

(8) can be shown as in the proof of (2), using Lemma 2. For
E=(A)- E=(J*) < E#(J?) S [E®(A)], = L*(X, <%, m) and so E#(J*) =
1 E?(A)], for some X in [E#(A)]. = L*(X, <&, m).

4) Set J = {feA: Sngdmz 0 for all ¢ in A}, then J is a
maximum ideal of A which is contained in 4,, We shall show J = 1.
Since J21I, by (2), J = E#(J) + I. If fe E®(J), then fe 4 and hence
SX[flzdm:O. Thus E9(J) = {0} and I =J. The proof for I~ is

similar to the above.

LEMMA 8. E<“(A) = AN A and for p =2, E*(H?) = H* N H? and
hence [A N Al, = H? N H>.

Proof. By Lemma 2, E<(H?)Z H? N H?. We shall show that
H* (\ B> < E=(H"). If fe H? (| H?, then both f — E?(f) and 7 — B2 (f)
lie in I*. Since p = 2,

[ 1r = B2y pram = | B2 — B(H(T= B (Phdm
=| B¢ - BP B GT=ENam = 0
and so f = E°(f) a.e.. The proof for E*(4) = AN A is similar to
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the above.

Let ¥~ be a commutative von Neumann algebra of operators
on L? which is contained in L* and let <& be the o-algebra of
measurable subsets K of X for which the characteristic functions
Yz lie in &#=. Then &7 is a sub c-algebra of & and F*=L"(F)=
L>(X, <&, m). We say E® 1is the conditional expectation for <=
(or &#).

PROPOSITION 2. Let A be a weak-*closed algebra of L such that
(i) the constant fumctions lie in A; (ii) A + A is weak-*dense in L>.
Let E® be the conditional expectation for AN A and let K = L*© H?
where ‘©’ denotes the orthogonal complement of H® in L?. Then E~*
18 multiplicative on A if and only if H* N H* =[A N A, and Kc H*.

Proof. Suppose E# is multiplicative on A. Then Lemma 3
implies H*NH*=[ANA],, Since H*=H'NH*@I* and A+ 4
is weak-*dense in L=, L* = H*@ I* and so K = I=

Suppose H*N H* =[AN A}, and KC H>. Then H*= H* N H*®
R. Since H*NH*=[ANA], and B=(4) = AN A, E=(H?) = [E(A)],=
[AN A), = H*N H* and hence ker B |,: = K. By the definition of
K, KnL® and so (ker E<|;) N L* is an ideal of B = H*N L~
Since ker B |, = (ker E¥ |,2) N L”, ker E* | is an ideal and hence E¥
is multiplicative on A.

Later in §5 we shall use this proposition to show that an algebra,
consists of analytic functions defined by a flow, is an (extended)
weak-*Dirichlet algebra.

DEFINITION 2. By Jensen’s inequality, we mean the following

statement:

E“(log |f]) =z log | EZ(f)|

for every f in A, where E<(log | f|) is defined by lim,.,., E¥{log (| | +¢)}.

If E*(4) = {1}, then E=(w) = | wdm and hence g log | f| dm =
log Sxfdml. Then it is known [15 Corollary 2.4.6.] that m is a
Jensen measure.

LEMMA 4. Let B be {1} + I, then B is a subalgebra of A and
for all f and g in B, ‘

Sxfgdm;: = Sdem Sngm .

The proof is clear.
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PROPOSITION 3. E®(A) = AN A and for p =1, E*(H?) = H? N
H? and hence [AN A), = H? N H*.

Proof. If feB = {1} + 1, then E=(f) = S fdm. By Theorem 2
X

in § 38, Jensen’s inequality is valid for A. By the definition of Jensen’s
inequality, it follows that for all f in B,

leog | £]dm = log ] Sdem [ .

If g in [B], is a real-valued function, then it must be a constant [5,
p. 140]. Hence if fe H? N H?, then both f — EZ(f) and f — EZ(f)
lie in I?(<[B),) and so f = E®(f) a.e.. Thus E?(H?)2 H*NH?” and
by Lemma 2 E“(H?) = H? N H*.

PROPOSITION 4. Suppose 1 < p £ . Then
H@I*=H*"NH*®I*"PHI* = L.

Proof. Since A+ A is weak-*dense in L*, by Lemma 3, EZ(A)+
I + T is weak-*dense in L*. By Lemma 1, [E(A)], ®[I+TI], = L*.
By Theorem 2 in §3, m is a Jensen measure for B = {1} + I. Hence
by [9] and Lemma 4, [I +I], =I*@ I>.

[EZ®(A)]. is a commutative von Neumann algebra as operators on
L2,

LEMMA 5. Let E¥ be an conditional expectation for [E<(A)].,
then E¥ = E®. Hence & = {X, ¢} if and only if EZ(4) = {1}.

Proof. For all fin A B*(f) = E“(B(f)) = B*(f). For E*(f)e
[E®(A)].. Since A+ A is weak-*dense in L=, it follows that
E¢ = E=,

Now we shall show the main lemma which is used later and is
trivial for weak-*Dirichlet algebras, i.e., E#(4) = {1}. We do not use
Jensen’s inequality to show it.

LEMMA 6. Suppose L < p < « and veL®. If for all f and ¢
n I, S v(f + 9)dm =0, then v lies in E*(H?) = [EZ(4)],.
X

Proof. Since A + A is weak-*dense in L andso E#(4) + I + T
is weak-*dense in L*, by Lemma 1, it follows that [E®(4)],B[I+T],=
L?. Let E¥ be a conditional expectation for [E?(4)].. then E¢ = E=
by Lemma 5. Hence E¥(L") = E¥(H?) and so ker B |, = [ + I],.
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If ve L annihilates I + I, i.e., S v(g + fdm = 0 for all f and ¢ in
X
I, then

| @ — B*@)g + Pam = - | E=@)g + Fram
- SXEﬂ(v)Eﬂ(g + fydm =0,

i.e., v — E”(v) annihilates I + I too. Since v — E#(v) lies in [I + I],,
it follows that v = E®(v) a.e.. For if kel with 1/p + 1l/g =1,
since v — EZ(v) annihilates I + I and it lies in [I + I],,

Ska — E*(v))dm = SXEﬁ(k)(fu — E(v))dm =0 .

Thus for any & in L°, S k(v — E#(@))dm = 0 and so v = E?(v) a.e.
X

3. Invariant subspaces and Jensen’s inequality, Let A be an
extended weak-*Dirichlet algebra of L* with respect to E®. For
1 < p= o, a closed subspace M of L” is called invariant if fe M and
g€ A, then fge M.

DEFINITION 3. Let M be a closed invariant subspace of L? for
1<p< . (i) Mis called type I if

XeM 2 X[ IM],

for every nonzero Xze[E7(A)]. so that X,M = {0}. (ii) M is called

type II if M* is type I where M* = {fe XFL*:S Sfodm = 0 for all
pq

geM} and F' is a support set of M and 1/p + 1/s =1, and if M

contains no nontrivial invariant subspace of type I. (iii) M is called
type III if M = [IM], and M* = [IM*], where 1/p + 1/s = 1.

If &#={X, ¢} or E#(A) = {1}, then an invariant subspace of type
Iis a simply invariant subspace [15], for then [E#(4)]. is the com-
plex field.

PROPOSITION 5. Suppose 1 £ p £ « and M is an invariant sub-
space of L. Then

M= %E,M® XEzM@ XEsM

where Yz, Xz, and Xz, belongs to [EZ(A)]., Xz, + Xu, + Az, = 1. Xz M
is type I, Xz, M is type Il and Yz M is type III. This decomposition
s unique.

The proof is parallel to [12, Theorem 1] and we omit it.
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THEOREM 1. Let M be an invariant subspace of L2
(1) M is type 1 of and only if

M = yzqH®

where Xy belongs to [EZ(A)]., and q is unimodular. If M = X,q' H*
with another umimodular ¢', then Xzq' = xzFq where F is a uni-
modular function in [EZ(A)]..

(2) If M s type II, then

M = yzqI*

where X, belongs to [EZ(A)].. and q s unimodular.

The proof is almost parallel to [12, Theorem 2] if we use Lemma
6. The proof of the part of ‘only if’ is only nontrivial by that
I* = 1*© H?. We shall give a sketch of the proof.

Let M be type I and let R = MO[IM],. Observe that for any
fin R,

|Lolsram=0 (eD.

Then by Lemma 6, it follows that |f[* lies in E<(H'). By Lemma
2 and Lemma 5, E#(H") = L"(X, <%, m). Hence |f| lies in EZ(H") and
Xerr €[E7(A)].. Let E be the support set of R, then there exists f,
in R with E(f,) = E. Define

fo(x)/lfo(x)l xe K

q(w)={ 1 ve B,

then X,q lies in M. By the assumption on M and that H* @ I* = L2,
it follows that M = X.qH>.

CorOLLARY 1. [15, Theorem 2.2.1]. Suppose &Z = {X, ¢}, M 1is
a stmply invariant subspace in L* if and only if M = qH?, where
q 1s unimodular and the q is unique up to multiplication by a
constant of absolute value 1.

In the proofs of Propositions 3 and 4, we used Jensen’s inequality
for A. We now proveit. Let welL!, w =0 and ¢ is any positive
number. Define EZ(log w) by lim.., E#{log (w + ¢)}.

THEOREM 2. Jenmsen’s inequality is valid for H*™.

Proof. Let f be an invertible element in H*®, then log|f|e L>.
Let E“ be an conditional expectation foz [E#(A)].,, then by Lemma
5 E¥ = E?. Since L” = E*(L")P[I + I]., EZ(log |f|) € EZ(L*) and
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log|f| — E7(log |f|)e[I + I].. Hence log|f| — E“(log|f|) lies in
the uniqueness subspace of [B], = [{1} + I]. by Lemma 4 and [5, p.
103]. By [5, p. 103], there exists f, in [B]. such that log|f| —
E?(og | f]) = log | f.|. Set fi = exp E”(log | f), then f, € EZ(H"). Since
both f, and f, are invertible in H®, f,f, is in H* too and

log | f| = E®(log | f]) + log | f| — E®(og | f|)
= log|f,| + log | f;| = log | f.f2] -

Hence f = qf,f, for some unimodular ¢ in E~(H"), log | f,| = log | qf, |
and E7(f) = ¢f.E?(f,). Since E<(log |f.|) =0,

S 1og1f2|dmzlog(§ fdm | =0

X X

and so f, =¢ + f,, for a constant ¢ of absolute value 1 and for
feo€[I]l.. Thus for any invertible f in H*,

E7(log |f]) = log | fi] = log|cqf, |
= log |E“(f)].

For all fin H* and for any ¢ > 0, E”7{log (| f| + ¢)} = log | E“(f) |.
For log (| f] + €) € L™ and so there exists an invertible g in H* with
log (|f] + ¢€) = log | g|, using Theorem 1 as in the proof of [15, Lemma
2.4.3]. Now we can use the method of Hoffman [6, Theorem 4.1].

Let k= fg™, then |R|=[fl/lg] =[fl/(f] +¢ =1. By Lemma 1,
|EZ(R)| =1 and so [E7(N)[[E7(9) [ = 1,

log |[E~(f)| = log |[E7(9) ] .

Since g is invertible in H*, by the first half of this proof, log | E“(g) |
= E?(og|g|) = E7{log(|f| + ¢)}. Thus

E“{log (| f| + &)} = log | EZ(g) | = log | EZ(f)]| .
COROLLARY 2. For every f in A,

(1) [ togifiam = | 1og|B"()|dm

(2) | exp B=(og Ifham = | | B=(£)|dm

(1) of this corollary is known [1, Corollary 4.4.6]. Our proof
18 different.

COROLLARY 3. For every f in H',
E=(log | f]) = log | EZ(f)

and so
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| Jog 1f1dm = | 10g| () dm

X X
| exp E-og £ dm = | 1B(s) dm.

Proof. Using Fatou’s lemma for the conditionol expectation
(easily shown), as in the proof of [3, p. 122}, we can show this
corollary.

4. Szegd’s theorem and factorization theorems. Let A be an
extended weak-*Dirichlet algebra of L” with respect to £¥. In this
section we shall show Szego’s theorem which is different from that
in Arveson [1, p. 611].

DeFINITION 4. A function % in H' is called outer if [ A], = H™.

If h is outer, then |2 | > 0 a.e. and | EZ(h)| > 0 a.e.; in particular,
¥zl ¢ [hl}, for every nonzero X in [E¥(A)].. If h, B’ are outer and
|h|=|h"|, then b = gk’ for some unimodular ¢ in [E7(4)]..

LeMMA 7. If fel? and Xpfe|fI), for every X, in [E7(4)].. with
Aef # 0, then f = Xggh where h is outer and q is unimodular.

Proof. Our assumption implies that [fA], is an invariant sub-
space of type I, and hence by Theorem 1, [fA], = X;,qH? for some
unimodular q. Now this lemma is clear.

As we noted in the proof of Theorem 2, H* is a logmodular
algebra on the maximal ideal space of L~ by Lemma 7. In general,
m is not multiplicative on H”. However E“ is multiplicative on
H<=. Moreover if we use the method of Srinivasan and Wang [15,
pp. 230-231], it is easy to show the following.

(a) H'= {feL‘: Sngdm =0 for all g in I}.

(by H”=H'nNnL"
If D is a subalgebra such that D2 H” and it is an extended weak-
*Dirichlet algebra with respect to £, then D= H=. For I* Cker E7|,
and by Proposition 4 [ker EZ|,],=I%. So [ker E7|,], = I* and
[D), = H*® by Proposition 4. By (b), it follows that D = H".

THEOREM 3. Let wel*, w=0. Then

inf SX[ 1 —gPFPwdm = gyexp E7#(log w)dm ,

gel
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where EZ(log w) is defined by lim,_, E®{log (w + &)}.

Proof. We shall use the method of Srinivasan and Wang [15,
Theorem 2.5.5]. We can show the inequality of arithmetic and
geometric means for conditional expectation. So if v is a real funec-
tion in L' and expwve !, then exp E®(v) < EZ(expwv). Fix wel},
w = 0. Hence for any g in I and any ¢ > 0,

lel — 9P (w + €)dm = Sxexp E={log|1 — g]?(w + &)}dm
= Sxexp EZ(log |1 — g |*) exp E®{log (w + &)}dm .
By Corollary 3,
SXI 1 —gP(w+e)dm = Sxexp E<{log (w + e)}dm .
As e—0
gxl 1 —gPfwdm = Sxexp 121531 E= {log (w + &)}dm
= Sxexp EZ(log w)dm

for all g in I, which is one half of theorem.
Fix any ¢ > 0.

infS 11— gl (w + &)dm > 0
gel JE
for all nonzero X; in [E%(4)].. For by the first half of theorem,
infg 11— g Ap(w + e)dm
gel JX
= S exp E#{log Xz(w + €)}dm = 0 .
X

For let E=: be a conditional expectation for X;[E#(A)]. and let E*:
be a conditional expectation for (1 — X;)[E?(4)]... Then

E={log Xg(w + €)}
=01<i£) EZ[log {Xz(w + €) + 6}]
= 1}3}1 XzE=[log (Xz(w + €) + 0}] + (1 — Xp)E®[log {Xz(w + €) + 6}])
= lgl [EZ{log (w + ¢€) + 0} + E<(log 0)]

= XzE%{log (w + &)} + laim A —-XAplogd £ — .

So Xg(w + &)* ¢ [(w + €)**I], for all nonzero X, in [E#(A)]. and hence
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by Lemma 6, there exists an outer function 4, in H® with |h, > =
w + e. Hence if we L', by Corollary 3,

infS 11— g wdm
gel JX
ginfs 11— g (w + &)dm
gel JX
— infg 11— g*(w + &)dm = S | E=(h) | dm
gel JX X
=< S exp E“(log | k. [)dm = gxexp E#{log (w + e)}dm .
X

This completes the proof as ¢ — 0.

REMARK. We shall state Szego’s theorem in Arveson [1, pp.
611-615]. Let we L', w=0. Then

inf {SX{u —glPwdm;gel, ue E#(A) and leog |u|dm = O}

= exps log wdm .
X

COROLLARY 4. [15, Theorem 2.5.5.] Suppose <# = {X, ¢}. Let
wel', w=0. Then

infg ll—gfzwdmzexpg log wdm .
X pq

gel

Proof. Since [E¥(4)].., is the complex field, S exp E¥(log w)dm=
X
exps log wdm and so Theorem 8 implies this corollary. This
pe
corollary can be shown by Szego’s theorem in Arveson, too.

COROLLARY 5. he H' 4s outer if and only i |EZHh)| >0
and

S exp E=(log | h|)dm =g | E=(h) | dm .
X X
In particular, if &= {X, ¢}, then h e H* is outer if and only if

exp leog |k |dm = Sthm‘ >0.

Proof. If he H' is outer, then there exists h, in H? which is
outer, such that » = h?’. Then by Theorem 3,
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| 1B dm = | B0 am =int | [1— g R dm

- SX exp B (log | h, [dm = S exp E-(log | 1 dm .
X

To prove the ‘if’ part, if |E“(h)| > 0, a.e. then h = qh? by Lemma
7 for h,e H* is outer and ¢ € H* is uni- modular. Then our con-

dition gives

|, exp E-og [ hdm = | | B (@) || E=(i2) | dm
< 1B°0) |am = | exp B-(og |t pdm .

Thus |EZ(q)| = E7(¢q) a.e.. Since |¢| =1 a.e.,
E“(lq —E7(@)) =0,

and hence ¢ = E”*(q). This shows that % is outer.
If fe H”, by (2) in Corollary 2

g exp B”(log | f])dm = eXpS log |f| dm
X X

= exp| log | B*(/) | dm

and
| exp B(og |fhdm = | 185 dm

= exp| log | B(f) ldm .
If f is invertible in H*, then
|, exp B-(og |/ dm = | | B=(f)| dm

> expgxlog \f| dm = expsxlog \E(f) | dm .

Moreover if | E“(f)| = constant a.e., then

[ exp B-(og | fhdm = | E~()]dm = exp |, Jog 1] dm

= eXpSXlog \E7(F) | dm .

In general,

§ exp E‘"(log]fi)dM£eXpS log || dm
X X
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and

|| EB=(f) I dm z exp | log | E=(f) | dm. .

THEOREM 4.

(1) Ewvery f in H* withs exp EZ(log | f))dm > 0, for any Xz€
[E#(A)]., so that Xzf + 0, is aEproduct of two H? functions.

(2) A function f in H' is a product Xz »qF of an inner func-
tion q (i.e., g€ H” with |q| =1 a.e.) and an outer function F if and
only +f S exp EZ(log |f)dm>0 for any Xze[E#(A)]. so that Xzf+0.

(3) EA nonnegative function w in L' is of the form Xz.,|h| for
some outer h in H' if and only if S exp E?(log w)dm > 0 for any
X € [E7(A)]. so that Xpf # 0. *

Proof. (1) By Theorem 3, for every nonzero X c[E“(A)]. so
that X,f = 0,

int | 11— g%, 1f1dm = | exp E=(og 2,1 £)dm

gel

~ SEexp E*(log |f)dm > 0 .

Hence if M, = [wA], and w = V/[f], then M, is an invariant sub-
space of type I. By Theorem 1, M, = X;.,,0H? and so |f|l=w’=
Xerq®h? where g =1 a.e. and he H®. This implies (1). (2) and (3)
follows as in the proof of [15, Theorem 2.5.9] and (1).

We can write Theorem 4 in another form.

THEOREM 4'.

(1) Ewery f in H' with XgnEZ(log |f]) > — a.e. on E(f), is
a product of two H? functions.

(2) A function fin H* is a product Xz»qf of an inner function
q and an outer function F if and only if Xz ,E?(log|f|) > — « a.e.
on E(f).

(8) A nonnegative function w in L' is of the form | k| for some
outer h in H* if and only if XzwmE?(log w) > — « a.e. on E(w).

If &% = {X, ¢}, then Theorems 4 and 4’ implies [15, Theorem 2.5.9].

5. Some theorems concerning L?. We wish to extend some of
our theorems in §§8, 4 from L* to L* to general p, i.e., Theorems
1, 3, and 4. However if we use the method of Srinivasan and Wang
[15, pp. 242-247], they follow easily. So we omit the proofs. But
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we shall give two important invariant subspace theorems, known
when % = {X, ¢} [12, Lemma 1].

THEOREM 5. Suppose 1 < p < q = oo. There is a one-to-one cor-
respondence between invariant subspaces M, of L* and (weak-*closed
for g = ) invariant subspaces M, of L°, such that M, = M, N L9,
and M, is the closure in L* of M,.

Proof. If well!, w =0 and log we L', then w = | g |* with outer
g in H?. For then EZ(logw)> — « a.e. and so we can apply
Theorem 4’. We shall show that M, N L™ is dense in M,. Let f be
in M,. We shall use the well known method [6, p. 12]. For each
n let k, =min, n|f|™), then 0k, <1, k. 2k £ -¢-—1 ace.,
and log k,c L'. For each k,, there exists an outer g, in H* with
k,=lg.|. Moreover we can assume that £¥(g,)>0 a.e.. For |[E¥(g,)|>0
a.e., let ¢, = sgn E9(g,), then E%(q,9,) = 7, E“(g,) > 0 a.e.. Again q,9,
is outer with %, = q,9,. Write ¢,9, as g, again. We ghall show
that ¢, tends to the constant function in norm, and on a subsequence
almost everywhere. Fix n, then for any ¢ > 0, there exists a & in
I such that

S E’J"(gn)ders:infg ]1~—g]2|gn]dm+s>§ IL—h|*|g,.|dm
X gel JX X
gexpg Iog[l—hlzdmxexpg log | g, | dm .
X X
By Theorem 2 and as ¢ — 0, for each =,

g E*(g,)dm = eXpS log|g,|dm .
X X

By Fatou’s lemma, it follows that exp |\ log|g,|dm — 1 and hence
X

S g.dm = S F%(g,)dm — 1. Therefore

X pe

S lgn—llzdng [gmdmﬂ—zReg g.dm
X X X
§2—2Sgndm~——>0.

There exists a subsequence {g,,} such that g,, — 1 a.e.. Since g, f
eM,NL” fis a limit of bounded functions in M,. Since M, N L~
is dense in M, it is clear that M, N L° is dense in M,. By the first
half of theorem, as in the proof of [6, p. 12], we can show that
[M], N L* = M,.

PROPOSITION 6. If M is an invariant subspace of L°(m) A < p
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< o), then Xzung € M for some unimodular q and the support set
E(M) of M. Moreover

[ M| = Xg,"Zgup | H*(m) | + L — XEO)XE(M) | L*(m) |,

where Xz M is the largest subspace that contains no nontrivial reducing
subspace of L” and X, M M and | M| = {|f|; fe M}.

Proof. By Theorem 4, if u is a real-valued function in L, then
there is he H” such that ¢*=|h| and h*e H”. Hence by [14,
Theorem] and Theorem 5, the former half of this proposition follows.
The latter half can be shown as in the proof of [14, Corollary 5].

6. Weak-*Dirichlet algebras. Let A be a weak-*Dirichlet
algebra of L=, i.e., it is an extended weak-*Dirichlet algebra with
respect to E® which is a conditional expectation for <& with <Z =
{X, ¢}. Then m is multiplicative on A. Suppose B” is any weak-
*closed subalgebra of L™ which contains A. The measure m was
called in [12] quasi-multiplicative on B® if S fidm =0 for every f
in B~ such that \ fdm = 0 for all X, in B°°.X It is a consequence of
the definition of g, weak-*Dirichlet algebra that if f is in H* and

S fdm = 0 for all X, in H", then S Fidm = 0. Let
E X

By = {feBw: Sxfdm - 0}

and let I$ be a maximum weak-*closed ideal of B® in By [12, Lemma
2l. Iy is given by { feB™: Sxfgdm — 0 for all g in Bw}. Let <3
be a self-adjoint part of B*. Suppose E~Z is a conditional expectation
for &5.

PROPOSITION 7. Suppose B~ is any weak-*closed subalgebra of
L which contains A. Then the following are equivalent.

(1) m is quasi-multiplicative on B”.

(2) [Bw n Bw]z = [Bw]z N [Bw]z-

(38) EZ 43 multiplicative on B.

(4) B~ s an extended weak-*Dirichlet algebra with respect to
E-=.

Proof. (1) = (2) is known in [12, Theorem 4]. Since B~ + B>
is weak-*dense in L>, (8) = (4) is clear.

(@)= (8). Let K = L*©[B~], then [I%], = K by [12, Lemma 2]
and so K [B”],. Proposition 2 implies this equivalence.
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By Proposition 7, [12, Theorem 2] is a corollary of Theorem 1.
For w in I* with w = 0, logwe L' if and only if w = |g| for some
outer function g in H' [15, Theorem 2.5.9]. Since ¢ is outer,

expS log|g|dm = H gdm'>0. We want to know when log w ¢ L.
X X

Suppose B~ is any weak-*closed subalgebra of L™ which contains H*
properly and on which E7 is multiplicative. Even if log w¢ L', it
can happen that E%(log w) > — «~ a.e.. Then by Theorem 4, w =
|g| for some ¢ in [B], with [gl3], = [I5.c H*. If ge H,

0= ’ Lgdml = exp leog lg|dm = exp SXE'ﬂ(log | g hdm
5 | exo B (og g ham = | | B=()| dm,

and [gA], & H'. In general, [gA], = q[B~], for some unimodular ¢ in
H* or H* = {he L™: h[gA), S[gA)} and [gA], is type III for H™.
Set A, = { feA: S fdm = O}, then Szegd’s theorem implies

infS |1—g|2wdm=inf§ 11— g[f wdm
gedp JX geH8° X

(1)
= expS log wdm .
X

When B~ 2 H* and E< is multiplicative on B*, Hy 221%. By Theorem 3

(2) inf SX| 1 — g wdm = Sxexp E”(log w)dm .

oo
geIB

If fe 3N H” and gelj, then by Theorem 2,

[ log|f +gldm = | log|fidm = log || fam|.
X X X
Now we shall show other versions of Szego’s theorem.

(3) inf Lll—u]zwdm=exp§X10glEﬂ(w)]dm.

(o] 00
weHy NLp

For since H” = H* N &5 + I3 [12], it follows that H* N &5
is a weak-*Dirichlet algebra of <°%. Thus

inf S |1 — u|*wdm
X

00 )
uEHoﬂfB

— inf S E*(|1 — u |t w)dm = inf SX| 1 — [ B*(w)dm
X

= exp leog EZ(w)dm .
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Fix ve &% with »™* in &~75.

2y inf SX| v — g wdm = Sxexp E*(log w) | v |*dm .

o
gely

For the L*(|v > wdm)-closure of v™'I3 contains I3 and so by (2)

inf Lu — o [* | v P wdm

oo
geIB

= inf g 11— g | wdm = gXexp E*(log | v ! wydm

geI?
= S exp E*(log w) | v [*dm .
X

The following is Szego’s theorem by Arveson [1, pp. 611-615].
We shall give another proof to connect (4) with (2) and (2).

inf ﬁ v —g)Pwdm; gels, ve &% and
X
g logfvldmgO}
X
(4) = inf {SxexpE’@(logfw)lv{zdm;veg‘; and
S loglv[dm_z_O}
X

= expS log wdm .
X
For

exp S log wdm
X
= inf {S e*wdm; u € L3 and gudm = O} .
X

By Lemma 7 and Theorem 2, there exists f in (H*)™! such that
E“(log |f]) = p*E7(u) = log | EZ(f)| and so SXlog | EZ(f)| dm = 0. So

exp SXlog wdm
= inf {S |fI? wdm; fe (H*)™ and S log | EZ(f)|dm = O}
X X
= inf {S [v — g|*wdm; gel3, ve &% and Slog[v[dm = O}
X
= inf {S exp E°(log |v — g [*)) exp EZ(log w)dm; ge %,
X

ve . ¥3 and Slog]vldmgo}
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= inf {S exp EZ(log w)-|v >*dm; ve &% and
X
S log|v|dm = 0}
X
= inf {expg log wdm expS log|v|tdm; ve &% and
X X
S loglv}dmgO}
X

= exps log wdm .
X

7. Applications.

(I) Let G be a compact abelian group dual to a discrete group
I'. The Haar measure m on G is finite, and normalized so that
m(G) = 1. Suppose a semigroup P is given in /' such that I =
PU(—P), i.e., P orderes I'. Let A be the set of all trigonometric
polynomials f on G the form f = Xa X, (WeP). Let &~ be the
weak-*closed linear span of Ja,X, (e PN (—P)) and let E* be the con-
ditional expectation for <#~. Then A is an extended weak-*Dirichlet
algebra with respect to E~.

In particular, when PN (—P) = {0}, it is called that P orders I”
totally. Then A is a weak-*Dirichlet algebra. Let P, be a semi-
group of /" which contains P properly. Let H, be the weak-*closed
linear span of all trigonometric polynomials f on G of the form f=
YaX, weP,). Define &~ = <7 and EZ = E*® ag the above. Then
H, is not a weak-*Dirichlet algebras, but it is an extended one with
respect to E¥. Let I, be the weak-*closed linear span of all tri-
gonometric polynomials f on G of the form f = Ya,X;, W¢ — P,). Then
I,=kerE”|H,=1I3,.

(II) Let (X, .7 m) be a probability measure space and {T,; ¢ ¢ R}
be a flow. Suppose m is invariant under 7T,. The action of R on
X induces a weak-*continuous, one-parameter group {T.},.r of auto-
morphism of L* = L*(m). They are defined by

|, T/@e@am@ = | AT @)g@dm@)

for f in L™ and g in L'. For each element f in L” and a function
¢ in L'(R), we define the convolution fx¢ in M by

fro=\"_sT.fam .

The above integral exists in the sense that
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| 7xs9dm = 25,95 =" o) (|T.roam )iz
=" sexT.s, pat
for ¢ in I* [2, Proposition 1.6]. Define the ideals of L'(R) J(f) by
J(f) ={pe L(R): f+¢ = 0} .
The hull of the ideal J(f) is said to be the spectrum of f and is

denoted by spf. A is defined to be the set of all f in L* with
spf <0, ).

Let dy = dt/z(1 + t*) and L°(R x X) = L*(y X m), where vy X m
is a completion of the product measure of v and m. Set F(¢, x) =
T.f(x) for fin L>, then F(¢t, x) e L”(R x X). Set g = 1 — i) + )™,
then ¢ e H*(R) and there exists D%, f7g™ such that

where f) e L*(m) and H”(R) is the class of all functions ¢ in L*(R)
such that spg<|[0, ). If spfE|0, <), then it is easy to show that

S T.fodm e H*(R) for every g in L' and hence it follows that
X

Zf‘”’ " dvdm —— 0 ,

I\ 7, ) — S e

Thus T.f(x) = F(t, x) € H*(R) a.e. x(m). If T,f(x) = F(t, x) e H*(R)
a.e. x(m), then it is clear that S T.fgdm e H*(R) for every g in L}
X

and hence spf<[0, ). This implies that A is a weak-*closed sub-
algebra of L™ which contains the constants. Let & = {feLr:
T.f = f} for 1 £ p £ « and E” be a conditional expectation for &~

THEOREM 6. [11] [8]. A is an extended weak-*Dirichlet algebra
with respect to EZ. If the flow is ergodic, then A is a weak-*Dirichlet
algebra.

We shall give the proof in which spectral condition (ef. [2] [8])
is not used but Proposition 2 is used.

LEMMA 8 [11]. Suppose 1 < p < co. Then
(FfeLr.spfs{0)} ={fel”T.f=fae.l}.

Proof. If T.f =f, since {fx¢, g) = ([, 9>$(0) for every g in L7,
then spfC{0). If spfc {0}, set F(Y) :S T.fgdm. Then we can
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show as in the proof of [4, p. 50] that sp FF€ — spf. Hence F isa
constant a.e. on R and T.f = f a.e..

LEMMA 9 [4, Proposition 2]. Suppose 1 £ p = oo. Then if fe L?
S fogdm =0  for all g in A,
X
then sp f <0, o).

Proof. For any hin L” and any ¢ in L\(R), {f*¢, h) = {f, h=¢)
where $(¢) = ¢(—t). Hence if ¢(s) =1 for s <0 with supp ¢ =
(— o=, 0), it follows that fx¢ = 0. This implies sp f<S[0, o).

The proof of Theorem 6. If fe L, S Fle + Bydm = 0 for all b, k
in A, then spf< {0} by Lemma 9. By Lgmma 8, T.f=fe&" and
f annihilates AN A = <. Since &~ is dense in &, f =0 a.e..
Thus A + A is weak-*dense in L~. In order to prove that E* is
multiplicative, by Proposition 2, it is sufficient to show that K =
LPOHcH and [ANAl,= H* 0 H% Set 572 =(fe L spf<|0, )},
then 57?2 H? Since #°N 57* = &* and AN A = &=, it is clear
that [AN A}, = H*N H®. By Lemma 9, KC 27 So if H?>= 577
the proof is complete. If fe #* O H? then spf< {0} and hence
fe &t While &2 c H?, this implies f =0 a.e..

(IIT) Let C(X,) be the set of all continuous complex-valued funec-
tions on a compact Hausdorff space X, and let A, be a function
algebra on a compact Hausdorff space X,. Moreover let 4, be a
Dirichlet algebra of C(X,), i.e., A, + A, is uniformly dense in C(X,).
Suppose A is the set of all functions of the form; for u, veC(X)
and feA4,, v + vf. Then A is an subalgebra of C(X, x X)).

Let m, be any probability measure on X, and m, be a nontrivial
representing measure of any complex homomorphism of 4,. Let .o
be the o-algebra of all Borel sets of X, X X, and m be the comple-
tion of m, X m,. Let & be the o-subalgebra of .o~ consisting of
all Borel sets of the form K, x X, where F, is a Borel set of X,.
Let E” denote the conditional expectation for <Z. Then 4 is an
extended weak-*Dirichlet algebra of L*(m) with respect to £7. TFor
it is clear that (i) the constant functions lie in A4; (i) A+ 4 is
weak-*dense in L~; (iv) E°(A)ZANA. For u,w,v, veCX) and
g, g' €4,

E ({(u + vgl{uw + v'g'})

= yu + u’vg gdm, + m)’g g'dm, + v’ g gdm, X g 9'dm,
X, Xy Jxo Xy

=E7(uw -+ vo)E (w + vg).
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This implies that (iii) for all f and ¢ in A, E*(fg) = EZ(f)E“(g).
Then I = {fe A: EZ(f) =0} = {u + vg: SX gdm, = 0and ve C(X), ge
Al :
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