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Let S be a compact subset of R?. We establish the
following: For 1 <Fk < 2, the dimension of ker S is at least
k if and only if for some ¢ > 0, every f(k) points of S see
via S a common k-dimensional neighborhood having radius
¢, where f(1) =4 and f(2) = 3. The number f(k) in the theorem
is best possible.

We begin with some definitions: Let S be a subset of R‘. For
points # and y in S, we say x sees y via S if the segment [z, y] lies
in S. The set S is starshaped if there is some point p in S such
that, for every x in S, p sees ¢ via S. The set of all such points
p is called the (convex) kernel of S, denoted by ker S.

A well-known theorem of Krasnosel’skii [5] states that if S is
a compact set in R?, then S is starshaped if and only if every d + 1
points of S see a common point via S.

Although various results have been obtained concerning the
dimension of the set ker S (Hare and Kenelly [3], Toranzos [6],
Foland and Marr [2], Breen [1]), it still remains to set forth an
appropriate analogue of the Krasnosel’skii theorem for sets whose
kernel is at least k-dimensional, 1 <%k <d. Hence the purpose of
this work is to investigate such an analogue for subsets of the plane.

The following terminology will be used. Throughout the paper,
conv S, el S, int S, bdry S, and ker S denote the convex hull, closure,
interior, boundary, and kernel, respectively, of the set S. If S is
convex, dim S represents the dimension of S. Finally for 2=y, R(z, y)
denotes the ray emanating from x through ¥ and L(x, ) is the line
determined by z and y.

2. The results. We begin with the following theorem for sets
whose kernel is 1-dimensional.

THEOREM 1. Let S be a compact set in R:. The dimension of
ker S is at least 1 if and only if for some € > 0, every 4 points of
S see via S a common segment of radius €. The number 4 is best
possible.

Proof. The necessity of the condition is obvious. Hence we need
only establish its sufficiency.

15



16 MARILYN BREEN

By Krasnosel’skii’s theorem in R’ S is starshaped, so we may
select a point z in ker S. Moreover, we assert that every 4 points
of S see a common segment of length ¢ having 2z as endpoint (we
refer to such a segment as an s-interval at z): For 2, z, @, 2, in
S, these points see a common 2:-interval [a, b] in S, and since ze
ker S, conv{z, a,, a, b} = Sfor each 1 <7 < 4. Hencex, sees conv{z, a, b}
for every i. Certainly one of the edges [z, al, [, b] of the triangle
(possibly degenerate) conv {z, a, b} has length at least ¢, and this edge
satisfies our assertion.

To complete the proof, we consider two cases.

Case 1. Assume that zeintS. Let N be a disk about z of
radius » < ¢ contained in S. If N =S the result is immediate, so
assume that S ~ N == ¢. ForyeS ~ N, we define C, to be the subset
of N seen by y. Since S is starshaped, S is simply connected, so
C, is convex. Let [a,, b,] be the intersection of C, with the line
perpendicular to L(y, z) at z, and let §, be the smaller of the lengths
of the segments [a,, z] and [b,, ], say the length of [a,, z].

If glbé, > 0, then NC, contains a neighborhood of 2z, contained
in ker S. Hence we may assume glbd, = 0.

Let {y,.} be a sequence of points in S such thatd, — 0asn— eo.
Let ¥, be a limit point of {y,} and assume y, converges to y,. Set
L = L(y,, z) and call the open halfplanes into which L divides the
plane L, and L,. Without loss of generality, we assume that for
each #n, the corresponding «, lies in the closed halfplane cl L, deter-
mined by L.

We now show that every two points of S see a common é-interval
at 2z in ¢l L,;: Otherwise, some members z, and z, of S would see
no such interval, and there would exist points ¢, and ¢, in bdry
NN L, such that every e-interval at z seen by both z, and 2z, would
lie in the convex region bounded by rays R(z, q,) and R(z, ¢,). However,
for ¢, sufficiently small, v, sees no e-interval at z in this region,
impossible since x, x,, ¥, see a common c-interval at z. Thus the
result is established.

Assume that the points of bdry NN el L, are ordered in a clock-
wise direction from s, to ¢,, where s, and ¢, denote the endpoints of
the interval NN L. For each y in S, there exist s, and ¢, on bdry N N
cl L, such that y sees [s,, 2] U[t,, 2] via S and such that s, and ¢,
are, respectively, the first and last points on bdry NN el L having
this property. Finally, let E, denote the convex hull of all segments
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[z, a,] seen by y, where a, € bdry NN cl L,. Certainly y sees E, via S.

We say a <b on bdry NNelL, if a precedes b in our clock-
wise order. Since every pair of points of S sees a common e-interval
at 2z in cl L,, it follows that lubs, < glbt¢,. Let s, =lubs, and ¢, =
glb¢t,. Then for each y we haves, <s, <s, ¢, ¢, <7,. Ifs, =s
or t, = t,, the proof is complete. Hence we assume that s, # s, and
t, # t,, so that conv{s, 2, t,} N L = {z}. If for some positive number
7', the set N E, contains an interval of length +' in conv{s, z, ¢},
the proof is finished. Otherwise, for every 1/n there is some w, in
S for which E, = E, does not contain M(z, 1/n) N conv {s,, 2, t,}, where
M(z, 1/n) denotes the 1/n-disk centered at z. Hence the sequence of
sets E, converges to [s,, ]

In this case, every point of S sees some ¢-interval at 2z on L:
Suppose on the contrary that for some z in S, x sees neither [s,, z]
nor [z, %] via S. Then there exist points p, and p, in bdry NN L,
and points p; and p; in bdry NN L, such that every c-interval at z
seen by 2z lies either in the convex region bounded by R(z, p,) U
R(z, p,) or in the convex region bounded by R(z, »;) U R(z, p;). However,
for n sufficiently large, the points ¥, and w, defined previously see
no common é¢-interval at z in either of these regions, impossible since
every 4 points of S see a common ¢-interval at z. Thus the assertion
is proved.

Finally, we have to show that for at least one of the segments
I8, 2] and [z, t,], every point of S sees this segment via S: Otherwise,
there would exist points u,ve S, p, p.cbdry NN L, and pi, ;€
bdry N N L, such that the e-segments at z seen by both % and v would
be either in the convex region bounded by R(z, »,) U R(z, »,) or in
the convex region bounded by R(z, p)) U R(z, p;). This contradicts
the fact that w, v, w,, ¥, see a common c-segment at z for each value
of n. We conclude that ker S is a full 1-dimensional, and the proof
for Case 1 is complete.

Case 2. Assume that zebdry S. There are two possibilities to
consider.

Case 2a. Suppose that there exist points s, ¢, # in S such that
zeintconv{s, ¢, u}. Then for two of these points, say s and ¢, no
point of [s, z) sees any point of [¢,2) via S. Then s and ¢ see a
common é-interval at 2z in the closed region R’ bounded by rays
R, 2) ~[t, 2) and R(s, z) ~ [s,2). We define R to be that minimal
sector of a circle containing all e-intervals at z seen by both s and
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t. Then R is bounded by segments [z, s,] and [z, %] in S, and since
s, t, 8, t, see a common é-interval at z in R, certainly conv {s,, z, {,} =S.
As before, order the points of bdry R ~ ([z, s,) U |?, t,)) in a clockwise
direction, and say a < b on bdry R ~ ([z, s,) U [z, &) if a precedes b
in our clockwise ordering.

Assume that s, and ¢, are first and last points in our ordering.
For each v in S, define D, to be the convex hull of all ¢-intervals
at z in R seen by v, and let s, and ¢, be the first and last points of
D, in bdry R ~ (|7, s,) U]z, t)). Clearly s, = lubs, < glbt, = ¢,.
Furthermore, a simple geometric argument reveals that every % in
S sees the region conv{s, z,%} N D, via S. Buts, =<s,<s, =t <
t, = t, on bdry R, so conv {s,, 2, t,} N conv {s,, 2, t,} & conv {s,, z, t,} N D,
and y sees conv (s, 2, t,} Nconv {s, 2, t,} via S. This set is at least
1-dimensional and so dim ker S = 1, the required result.

Case 2b. Suppose that z e bdry convS. Then there must exist
a line H supporting S at z, with S in the closed halfplane cl H,
determined by H. Order the points {x:xeccl H, and dist (z, ) = &}
in a clockwise direction, and assume that s, and ¢, are the first and
last points of S in our ordering. Then conv {s, 2, t,} &S, since s,
and t, see 2 common é-interval at z.

If points s, 2, t, are not collinear, then the argument in Case 2a
above may be used to complete the proof. Hence consider the case
in which s, 2, ¢, lie in H. If s, = ¢, the proof is trivial, so assume
S, <z <t, Ifs,and t, see a common interval at z in H, U {z}, then
for some neighborhood N of 2, NN S is convex, and the argument
of Case 1 may be adapted to finish the proof. In case s, and ¢, see
no such interval, then using the fact that every 4 points see a common
e-interval at z, it is easy to show that for at least one of the segments
[s0, 2] and [i,, 2], every point of S sees this segment via S. Hence
we conclude that dimker S = 1 in Case 2, and the proof of Theorem
1 is complete.

The following example illustrates that the number 4 in Theorem
1 is best possible.

ExamprLeE 1. Let S be the set in Figure 1. Then every 3 points
of S see via S at least one of the segments [z, 2], 1 <4 <4, yet
ker S = {z}.

Example 2 shows that the uniform lower bound ¢ on the segments
seen by 4 points is necessary.

ExampLE 2. Let S be the set in Figure 2. Then every 4 points
see a common segment on the z-axis, but ker S is the origin.
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FIiGURE 2

Our second theorem is not limited to the plane and is essentially
a quantitative version of Krasnosel’skii’s theorem.

THEOREM 2. Let S be a compact set in R:. The dimension of
ker S is 2 if and only if for some € > 0, every 3 points of S see via
S a common netghborhood of radius . The number 3 is best possible.

Proof. Again we need only establish the sufficiency of the
condition. Clearly S is starshaped, so select z in ker S. We observe
that for every 38 points x,, 2., «; in S, there corresponds a connected
subset T of S such that dist (z, t)=¢ for each ¢ in T and conv (T U {z}) is
a 2-dimensional subset of S. To verify this, let N be a neighborhood
of radius ¢ seen by x,, %,, ;. Then since z€ ker S, conv ({x;,, 2l UN)S S
for each 4, so x, sees conv({z} UN) via 8. Letting T={y:ye
conv ({z} U N), dist (z, y) = ¢}, T satisfies the requirements given above.

Furthermore, letting D denote the closed ¢-disk about z, notice
that conv (7T U {z}) is either D or a nondegenerate sector of D. If
we associate with each set T the corresponding arc length 6(T') along
bdry D, since S is compact, the numbers 6(T) are bounded below by
some positive number 6. Therefore, for each y € S, we may consider
the collection G, of all sectors of D seen by y for which the corre-
sponding arc length on D is at least 6. Then using the sets G,, the
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argument in Theorem 1 may be appropriately modified and in fact
simplified to complete the proof. The details are straightforward

and hence are omitted.

To see that the number 3 of Theorem 2 is best possible, consider
the following easy example.

ExamMPLE 3. Let S be the set in Figure 3. Then every two
points of S see one of the regions A; via S,1 <1 < 8, yet ker S = 4.

@

FiGURE 3

In conclusion, it is interesting to notice that both Theorems 1
and 2 fail completely and in fact no f(k) is possible without the
requirement that S be compact.

ExampLE 4. To see that our set must be closed, let S denote
the unit disk with its center removed. Then every j-member subset
of S sees via S an open sector having arc length 27/2/, and every
denumerable set of points sees a radius of S. Yet the set is not
starshaped.

ExAMPLE 5. To show that S must be bounded, consider the
following example by Hare and Kenelly [4]: Define T, = {(, ¥):
n—1=y=n,n=2xz+y}, and let S=UT,. Then every finite
subset of S sees via S a common disk of radius 1/2 in T,, yet S is
not starshaped.

REFERENCES

1. Marilyn Breen, Sets in R® having (d—2)-dimensional kernels, Pacific J. Math., (to
appear).

2. N. E. Foland and J. M. Marr, Sets with zero dimensional kernels, Pacific J. Math.,
19 (1966), 429-432.

3. W. R. Hare, Jr. and J. W. Kenelly, Concerning sets with one point kernel, Nieuw
Arch. Wisk., 14 (1966), 103-105.

4. , Intersections of maximal starshaped sets, Proc. Amer. Math. Soc., 19 (1968),
1299-1302.




THE DIMENSION OF THE KERNEL OF A PLANAR SET 21

5. M. A. Krasnosel’skii, Sur un critéere pour qu'un domaine soit étoile, Math. Sb.,
(61) 19 (1946), 309-310.

6. F. A. Toranzos, The dimension of the kernel of a starshaped set, Notices Amer.
Math. Soc., 14 (1967), 832.

Received January 15, 1978.

THE UNIVERSITY OF OKLAHOMA
NormaN, OK 73019






PACIFIC JOURNAL OF MATHEMATICS

EDITORS
DONALD BABBITT (Managing Editor) J. DUGUNDJI
University of California Department of Mathematics
Los Angeles, California 90024 University of Southern Califorma
Huco RoSSI Los Angeles, California 90007
University of Utah R. FINN AND J. MILGRAM
Salt Lake City, UT 84112 Stanford University

3, Californ;
C.C. MOORE and ANDREW OGG Stanford, California 94305

University of California
Berkeley, CA 94720

ASSOCIATE EDITORS

E. F. BECKENBACH B. H. NEUMANN F. WoLF K. YosHiDA

SUPPORTING INSTITUTIONS

UNIVERSITY OF BRITISH COLUMBIA UNIVERSITY OF SOUTHERN CALIFORNIA
CALIFORNIA INSTITUTE OF TECHNOLOGY  STANFORD UNIVERSITY

UNIVERSITY OF CALIFORNIA UNIVERSITY OF HAWAII

MONTANA STATE UNIVERSITY UNIVERSITY OF TOKYO

UNIVERSITY OF NEVADA, RENO UNIVERSITY OF UTAH

NEW MEXICO STATE UNIVERSITY WASHINGTON STATE UNIVERSITY
OREGON STATE UNIVERSITY UNIVERSITY OF WASHINGTON

UNIVERSITY OF OREGON

Printed in Japan by International Academic Printing Co., Ltd., Tokyo, Japan



Pacific Journal of Mathematics

Vol. 82, No. 1 January, 1979

Werner Béni, Subspaces of positive definite inner product spaces of countable

AIMENSION . ..o o oot et 1
Marilyn Breen, The dimension of the kernel of a planar set.................. 15
Kenneth Alfred Byrd, Right self-injective rings whose essential right ideals

are two-sided . . ....... ... 23
Patrick Cousot and Radhia Cousot, Constructive versions of Tarski’s fixed

POINE TREOTEIMS . . oo vttt e e e e ettt et 43
Ralph S. Freese, William A. Lampe and Walter Fuller Taylor, Congruence

lattices of algebras of fixed similarity type. I .......................... 59
Cameron Gordon and Richard A. Litherland, On a theorem of Murasugi . . . .. 69
Mauricio A. Gutiérrez, Concordance and homotopy. 1. Fundamental

QUOUD « o o ot ettt e e e e e e 75
Richard I. Hartley, Metabelian representations of knot groups . .............. 93
Ted Hurley, Intersections of terms of polycentral series of free groups and free

Lie algebras .. ... ... e 105
Roy Andrew Johnson, Some relationships between measures................ 117
Oldfich Kowalski, On unitary automorphisms of solvable Lie algebras . .. .... 133

Kee Yuen Lam, K O-equivalences and existence of nonsingular bilinear

Ernest Paul Lane, PM-normality and the insertion of a contt
JURCLION . o o o oo e e
Robert A. Messer and Alden H. Wright, Embedding open 3
compact 3-manifolds ............... ... ... ... . ...,
Gerald Ira Myerson, A combinatorial problem in finite fields
James Nelson, Jr. and Mohan S. Putcha, Word equations in

Baburao Govindrao Pachpatte and S. M. Singare, Discrete g
Gronwall inequalities in three independent variables .
William Lindall Paschke and Norberto Salinas, C*-algebras
free products of groups . ............ i
Bruce Reznick, Banach spaces with polynomial norms . . ..
David Rusin, What is the probability that two elements of a
COMMULC? . oo e e e e e e e e e e e
M. Shafii-Mousavi and Zbigniew Zielezny, On hypoelliptic
operators of constant strength ......................

Joseph Gail Stampfli, On selfadjoint derivation ranges . . ..
Robert Charles Thompson, The case of equality in the matri
Mequality . ..... ..o e
Marie Angela Vitulli, The obstruction of the formal moduli
negatively graded case.............................


http://dx.doi.org/10.2140/pjm.1979.82.1
http://dx.doi.org/10.2140/pjm.1979.82.1
http://dx.doi.org/10.2140/pjm.1979.82.23
http://dx.doi.org/10.2140/pjm.1979.82.23
http://dx.doi.org/10.2140/pjm.1979.82.43
http://dx.doi.org/10.2140/pjm.1979.82.43
http://dx.doi.org/10.2140/pjm.1979.82.59
http://dx.doi.org/10.2140/pjm.1979.82.59
http://dx.doi.org/10.2140/pjm.1979.82.69
http://dx.doi.org/10.2140/pjm.1979.82.75
http://dx.doi.org/10.2140/pjm.1979.82.75
http://dx.doi.org/10.2140/pjm.1979.82.93
http://dx.doi.org/10.2140/pjm.1979.82.105
http://dx.doi.org/10.2140/pjm.1979.82.105
http://dx.doi.org/10.2140/pjm.1979.82.117
http://dx.doi.org/10.2140/pjm.1979.82.133
http://dx.doi.org/10.2140/pjm.1979.82.145
http://dx.doi.org/10.2140/pjm.1979.82.145
http://dx.doi.org/10.2140/pjm.1979.82.155
http://dx.doi.org/10.2140/pjm.1979.82.155
http://dx.doi.org/10.2140/pjm.1979.82.163
http://dx.doi.org/10.2140/pjm.1979.82.163
http://dx.doi.org/10.2140/pjm.1979.82.179
http://dx.doi.org/10.2140/pjm.1979.82.189
http://dx.doi.org/10.2140/pjm.1979.82.189
http://dx.doi.org/10.2140/pjm.1979.82.197
http://dx.doi.org/10.2140/pjm.1979.82.197
http://dx.doi.org/10.2140/pjm.1979.82.211
http://dx.doi.org/10.2140/pjm.1979.82.211
http://dx.doi.org/10.2140/pjm.1979.82.223
http://dx.doi.org/10.2140/pjm.1979.82.237
http://dx.doi.org/10.2140/pjm.1979.82.237
http://dx.doi.org/10.2140/pjm.1979.82.249
http://dx.doi.org/10.2140/pjm.1979.82.249
http://dx.doi.org/10.2140/pjm.1979.82.257
http://dx.doi.org/10.2140/pjm.1979.82.279
http://dx.doi.org/10.2140/pjm.1979.82.279
http://dx.doi.org/10.2140/pjm.1979.82.281
http://dx.doi.org/10.2140/pjm.1979.82.281

	
	
	

