Pacific Journal of

Mathematics

CONSTRUCTIVE VERSIONS OF TARSKI’S FIXED POINT
THEOREMS

PPPPPPP CousoT AND RADHIA COUSOT




PACIFIC JOURNAL OF MATHEMATICS
Vol. 82, No. 1, 1979

CONSTRUCTIVE VERSIONS OF TARSKI'S
FIXED POINT THEOREMS

PaTrIcK CoUsoT AND RADHIA COUSOT

Let F’ be a monotone operator on the complete lattice
L into itself. Tarski’s lattice theoretical fixed point theorem
states that the set of fixed points of F is a nonempty complete
lattice for the ordering of L. We give a constructive proof
of this theorem showing that the set of fixed points of Fis
the image of L by a lower and an upper preclosure operator.
These preclosure operators are the composition of lower and
upper closure operators which are defined by means of limits
of stationary transfinite iteration sequences for /. In the
same way we give a constructive characterization of the set
of common fixed points of a family of commuting operators.
Finally we examine some consequences of additional semi-
continuity hypotheses.

1. Introduction. Let L(<, 1, T, U, N) be a nonempty complete
lattice with partial ordering <, least upper bound U, greatest
lower bound N. The infimum L of L is NL, the supremum T of
L is UL. (Birkhoff’s standard reference book [3] provides the
necessary background material.) Set inclusion, union and intersection
are respectively denoted by <, U and N.

Let F be a monotone operator on L(E, L, T, U, N) into itself
(le.,, VX, YeL, (XY} ={F(X)<Z F(Y)}.

The fundamental theorem of Tarski [19] states that the set fp(F")
of fixed points of F (i.e., fp(F) = {XeL: X = F(X)}) is a nonempty
complete lattice with ordering &. The proof of this theorem is
based on the definition of the least fixed point Lfp(F) of F' by ILfp(F) =
N{XeL: F(X) < X}. The least upper bound of S < fp(F) in fo(F)
is the least fixed point of the restriction of F' to the complete lattice
{XeL:(US)E X}. An application of the duality principle completes
the proof.

This definition is not constructive and many applications of
Tarski’s theorem (specially in computer science (Cousot [5]) and
numerical analysis (Amann [2])) use the alternative characterization
of Ifp(F) as U{F% L):ie N}. This iteration scheme which originates
from Kleene [10]’s first recursion theorem and which was used by
Tarski [19] for complete morphisms, has the drawback to require
the additional assumption that F'is semi-continuous (F(US) = U F(S)
for every imcreasing nonempty chain S, see e.g., Kolodner [11]).
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The purpose of this paper is to give a constructive proof of
Tarski’s theorem without using the continuity hypothesis. The set
of fixed points of F is shown to be the image of L by preclosure
operations defined by means of limits of stationary transfinite itera-
tion sequences. Then the set of common fixed points of a family
of commuting monotone operators on a complete lattice into itself
is characterized in the same way. The advantage of characterizing
fixed points by iterative schemes is that they lead to practical com-
putation or approximation procedures. Also the definition of fixed
points as limits of stationary iteration sequences allows the use of
transfinite induction for proving properties of these fixed points.

Finally some consequences of the additional and less general
continuity hypothesis are examined.

2. Definitions.

DEFINITION 2.1. (Upper iteration sequence.) Let L(S, L, T,U,N)
be a complete lattice, ¢ the smallest ordinal such that the class
{0: 0 € ¢t} has a cardinality greater than the cardinality Card (L) of
Land F' a monotone operator on L into itself. The p-termed upper
iteration sequence for F starting with De L is the p-termed sequence
(X’ 0epny of elements of L defined by transfinite recursion in the
following way:

(a) X°=D

(b) X’ = F(X’") for every successor ordinal de u

(¢) X’ = Uuc; X* for every limit ordinal o e ¢
(the dual lower iteration sequence is defined by:

(e) X° =[\a<; X* for every limit ordinal o € p).

DerINITION 2.2. (Limit of a stationary transfinite sequence.)
We say that the sequence (X’ ey is stationary if and only if
{Fee p:{vBe, {8 = ¢} = {X* = X*}}} in which case the limit of the
sequence is X°. We denote by luis(F)(D) the limit of a stationary
upper iteration sequence for F' starting with D (dually [lis(F)(D)).

In the following the class of ordinals, the ordinal addition, the
ordinal multiplication and the first infinite limit ordinal are respec-
tively denoted by Ord, +, - and @ (the definition of -+ and - shall
be used in the form stated by Birkhoff [3]).

The set of prefized points of F is prefp(F) = {Xe L: X < F(X)}.
Dually postfp(F) = {Xe L: F(X) & X}. Therefore fp(F) = prefo(F)N

postfp(F).
We use Church [4}’s lambda notation (so that F' is A X. F(X)).
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3. Behavior of an upper iteration sequence.

LeMMA 8.1. Let (X?, 6 €O0rd) be the Ord-termed wpper iteration
sequence for the monotone operator F on the complete lattice
<, 1, T, U, N) into itself starting with De L,

(1) VPelL, {D< P} and {F(P) S P}}={VéeOrd, X’ < P},

(2) {Depostfp(F)}={VéeOrd, X° < D}.

Proof. Let PeL be such that D P and F(P) < P, then by
Definition 2.1(a) D =X"C P. Assume that vVaeOrd, {a¢<d}l=
{X*< P}. If ¢ is a successor ordinal, then we have X’ P so
that by monotony F(X°™') € F(P) < P proving by Definition 2.1(b)
that X C P. If 6 is a limit ordinal then by induction hypothesis
and definition of least upper bounds UJ..; X* & P proving by Defini-
tion 2.1(c¢) that X° & P. By transfinite induction vé € Ord, X’ < P.
In particular when De€ postfp(F) we have D D and F(D)ZS D
which imply VéeOrd, X° & D.

THEOREM 3.2. Let (X’ d€Ord) be the Ord-termed wupper itera-
tion sequence for the monotone operator F on the complete lattice
<, 1, T, U, N) into itself starting with De L,

(1) VoeOrd, let B <0 and n < ® be respectively the quotient
and remainder of the ordinal division of 6 by w (i.e., 0 = B-® + n),
v B >R, VB oYLl -0 +n X X,

(2) The subsequence {X*°,@e )y is a stationary increasing
chain, its limit X7 is the least postfixed point of F greater than
or equal to D.

(8) There exists a smallest limit ordinal & such that ¢ £ 7w
and X e prefo(F)U postfo(F).

(4) If Xteoprefo(F) then the subsequence (X’ & <0 <& + ()
(as well as (X°, & £ 08)) 1s a stationary increasing chain of elements
of prefp(F), its limit luis(F)(X®) is equal to X7* which is the least
of the fixed points of F greater than or equal to D.

(5) If Xtepostfp(F) then {(X**", new) is a decreasing chain
of elements of postfp(F) and Ve Ord, X = X*™™ where m 1is the
remainder of the ordinal division of 6 by w.

Proof.
(1) VoeOrd, there exist unique g and » such that 6 = 8-® + n

and B <0, n< w. If 6 is a limit ordinal then » =0 and V5’ > B,
B -®w>pB-w=20 and B -w is an infinite limit ordinal so that by
Definition 2.1(¢) X° & Uucpr.o X* = X#®. If n % 0 then 0 is a suc-
cessor ordinal and 0 —1) = B8-® + (m — 1). Assume that V4 such
that 8’ > B and V7 such that g/-w <7< 8 :-w + (n —1) we have
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Xt <€ X', According to Definition 2.1(b) and by monotony X° =
(X € F(Xr) = Xrt*, Also X° & X#“ therefore with v =~v +1
we get VR: 8 >B, VYR v =YV =R ®w+n, X’°C X", By trans-
finite induction on 6 Theorem 3.2(1) is proved.

(2) By 8.2(1) the subsequence {(X*“,acp) is an increasing
chain. Assume that {vyeOrd, {nep and ( +1)ep}={X7* =
Xwwiuell  This implies that (X*°, a¢epy is a strietly increasing
chain so that the class {X*“:a ey} is equipotent with the class
{@-w:aep}. Since na.(@-w)is a one-one function mapping {a: a € y}
onto {a-w: ac p} the class {X*“: @ ey} is equipotent with the class
{a: 2 € p}. Therefore by definition of ©# we have Card ({X*“: @ e y}) >
Card (L) and also by {Vaepy, X**c L} we obtain the contradiction
Card ({X*“: @ € p¢}) < Card (L). By reductio ad absurdum {37: e )
and (@ + 1) epy) and X7° = Xr¥e},

Since ) +1 < +1)-® and (9 + 1)-® is an infinite limit
ordinal Definitions 2.1(b) and 2.1(c) imply that F(X7*) = X7 C
Uecipin .o X8=Xteo = X7o Algo D= X"C Uyep.o X*= X7 s0 that
X7 is a postfixed point of F greater than or equal to D. Let
Pe L be such that F(P)S P and DS P. Then Lemma 3.1(1) implies
that X7° C P proving that X7“ is the least postfixed point of F
greater than or equal to D.

VaeOrd, @ > 7 implies a-® > 7 -® and therefore by Definition
2.1(¢) X*° = Upcao Xf = X7 U (Urwsp<aw X%). But X7°e postfp (F)
so that according to Lemma 3.1(2), VB=7n-w we have X°’ < X7°
proving that X** = X7¢ and that (X*°, a¢cp) and {X**, acOrd)
are stationary.

(The following Theorem 4.1 will show that X7 can be constructed
more directly as luis WX. X U F(X)(D) = luis WX.D U F(X))(D)).

(8) Since X7 ¢ postfp (F')and Ord is well-ordered there exists
a smallest limit ordinal & < 7-® such that X° and F(X*) are com-
parable.

(4) If X*eoprefv(F) then by monotony of F, Definition 2.1
and transfinite induction, it is easy to prove that {Vd, g<cOrd,
20 ={DS X* S XfC F(X?)}}. By definition of g the increas-
ing subchain (X’ £<i<&+ ) of elements of L cannot be strictly in-
creasing so that {Fee Ord: (£ <e<e+1<e+ ) and (X =X**")}. Then
by transfinite induction using Definition 2.1 it is immediate that
(X’ e <0< &+ ¢ and (X & <90) are stationary of limit X°. Since
DC Xt = X+ = F(X®), X* is a fixed (and postfixed) point of F
greater than or equal to D. Let PeL be such that DZ P and
F(P)<c P. By Lemma 3.1(1) we have X*< P proving that X° is
the least fixed (and postfixed) point of F' greater than or equal to
D. Moreover X = X7 by 3.2(2).

(5) When F(X*) & X* it is easy, using the monotony of F', to
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prove by finite induction that the subsequence (X***,new) is a
decreasing chain, If 6 =0 then 6 =0-®w + 0 and obviously X+ =
Xt = X**,  Assume that VaeOrd, {a < 6} = {X** = X**"} where m
is the remainder of the ordinal division of &« by w. If 6 is a suc-
cessor ordinal then 38€O0Ord, Incw such that 6 = 8-w + n with
n # 0. Henced —1 =78+ + (n — 1) so that by induction hypothesis
X(E+B)—-1 — XE+(:T~—1) —_ X6+(n—l) — X(€+'rb)—1. By Deﬁnition 2.1(b), XE+5 —
F(X¢+o) = (X%t )= X¢*,  If ¢ is a limit ordinal then £+4d1is a
limit ordinal because ¢ is a limit ordinal. Hence by Definition 2.1(c)
X = Urcers X' = (Uree XU (Uesr<ess X)) = XU (Urc; X¥7) = X°
since X*e postfp (F') implies according to Lemma 38.1(2) that
vy, X¢t7C X!, By transfinite induction, Vo € Ord, X¢+° = X¢** where
n is the remainder of the ordinal division of 6 by w.

The following corollary is immediate from 3.2(4):

COROLLARY 3.3. (Behavior of an upper iteration sequence start-
ing from a prefized point of F.) A p-termed upper iteration se-
quence {X°, 0 € ity for F starting with D e prefp (F') is a stationary
increasing chain, its limit luis (F YD) is the least of the fixed points
of F greater than or equal to D.

An upper closure operator p on L into L is monotone, extensive
(VXeL, X< p(X)) and idempotent (VX € L, p(0(X)) = p(X)). Dually,
a lower closure operator © on L into L is monotone, reductive
(VXeL, p(X) S X) and idempotent.

COROLLARY 38.4. The restriction of luis(F) to prefo (F') is an
upper closure operator.

Proof. V¥YDeprefp (F), we have luis (F)D) e fo (P) & prefo (F).
By 3.8, D & luis (F)(D). By transfinite induction it is easy to show
that the upper iteration sequence (X? ée p) for F starting with a
fixed point P of F is such that {Vée p, P = X’} so that in particular
for P =1luis(F)D) we have Iluis(F)(luis(F)D)) = luis(F)(D).
Finally by transfinite induction it is easy to show that the upper
iteration sequences (X°,de )y and <(Y? de p) starting respectively
by prefixed points D and E of L satisfying D C FE are such that
{vieu, X’ Y’}. Therefore by Theorem 8.3, 3c €y, 3¢’ € ¢ such that
luis (F)Y(D) = X = Xmexee) C ymexee) = V¢ = [yqis (F)(E).

Applying the duality principle, we get:

COROLLARY 3.5. The vestriction of llis(F) to postfp (F') is a
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lower closure operator.

4, Constructive characterization of the sets of pre- and post-
fixed points of F\.

THEOREM 4.1. The p-termed upper iteration sequences (X°, 6 € pty
and {Y’,depy for A X-XUF(X) and NX-DU F(X) respectively,
starting with an arbitrary element D of the complete lattice L are
stationary increasing chains such that voe pu, X° = Y°. Their limits
luis (WX - X U F(X))D) and luis(WX - D U F(X))(D) are equal to the
least of the postfized points of F greater than or equal to D.

Proof. 4.1.1. VDeL, D is a prefixed point of A X - XU F(X) and
AX . D F(X) which are monotone operators on the complete lattice
L into itself. Hence Theorem 3.3 implies that (X’ depy) and
(Y? depy are stationary increasing chains.

4.1.2. Viep, X’ = Y°,

By Definitions 2.1(a) and 2.1(b) the lemma is true for 6 =0 and

= 1. Assume it is true for every 7 such that 2 < v <o < p. If
0 is the successor of a successor ordinal then X’ = X'y F(X°™") =
YUY =DUFY™)UFY ™) =DUF(Y"") = Y° by Defini-
tion 2.1(b), induction hypothesis, 4.1.1 and monotony of F. If §
is the successor of a limit ordinal then Definition 2.1(b), induction
hypothesis, 4.1.1, Definition 2.1(c) and definition of least upper bounds
imply X’ = X’ UF(X'™) = Y7 UF(Y"™) = (Uecsn Y U F(Y*T) =
Us<s (YU F(Y°) = Uecs, (DU F(Y)UF(Y°)) = DU F(Y"™) =
Y?., 1If ¢ is a limit ordinal then Definition 2.1(c) and induction hy-
pothesis imply X° = U, X* = Uecs Y* = Y’°. By transfinite induec-
tion the lemma is true for every o€ .

4.1.3. By 4.1.1 and 4.1.2 the limits luis WX - X U F(X))(D) and
luis WX - D U F(X))D) exist and are equal. By 8.8 luis(ZX-X U
F(X))XD) is the least of the fixed points of A XX U F(X) greater
than or equal to D so that {vPelL,{P = PU F(P)}={F(P) < P}}
implies that luis WX - X U F(X))D) and luis WX -D U F(X))(D) are
equal to the least of the postfixed points of F' greater than or equal
to D.

COROLLARY 4.2. The set of postfixed points of F is a nonempty
complete lattice:
postfp (F)NZ, Ifp (F), T,ANS-luis(ANZ - Z U F(Z))(US), N)
where the least fixed point of F is Ifp (F) = luis (F)(D) = N{XeL:
F(X) < X} for every De L such that D < Ifp (F).
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Proof. By 4.1 and 3.4 the image of the nonempty complete
lattice L by the upper closure operator p = luis (WZ - Z U F(Z)) is
included in postfp (F'). Reciprocally, VP < postfp (F') we know that
Pefp(\NZ-Z U F(Z)) so that the upper iteration sequence {X? o € )
for NZ. Z U F(Z) starting with P is such that {voep, P = X°}.
Hence p(P) = P that is postfp (F') & p(L) and by antisymmetry we
have postfp (F') = p(L).

By Ward [21]’s theorem p(L) is a nonempty complete lattice
(&, 0(L), T,AS-0(US), N).

Also by 4.1 luis NZ-ZU F(Z))(L) =luis(NZ- L UF(Z))(L) =
luts (F')(L) = Npostfp(F) by definition of the infimum of a complete
lattice. By 8.3 luis (F)(L) is the least of the fixed points of F
greater than or equal to L, therefore it is the least fixed point of
F.

Finally let DeL, be such that D < ifp (F) and (X% dep),
(Y, depy, {Z° dec ) be the upper iteration sequences for F' respec-
tively starting with 1, D, and Ifp (F'). By transfinite induction it
is immediate that {viepy, X°C Y°C Z° = ifp (F')}. According to
3.3, (X’,depy is stationary and its limit luis (F)(L) is Ifp (F').
Therefore (Y? o€ ) is stationary of limit Ifp (F').

Applying the duality principle, we obtain:

COROLLARY 4.3. The set of prefived points of F is a nonempty
complete lattice:
prefp (F)S, L, gfp (F), U, NS -Uis(MZ-Z N F(Z))(NS))
where the greatest fixed point of F is gfp (F') = llis (F)(D) = U{X e L:
X € F(X)} for every De L such that gfp (F') < D.

Let {F;:ie€I} be a family of monotone maps from L into L.
The wunary polynomials of the algebra <(L; U, N, {F;:1€I}) are
mappings on L into L defined as follows:

(i) The identity mapping A X -X is a unary polynomial.

(ii) For every 4e€l, if P is an unary polynomial then so is
A X - Fy(P(X)).

(iii) If {P;:veJ} is a family of unary polynomials then so are
AX - Ures Po(X) and AX - Nyes Pr(XD).

(iv) Unary polynomials are those and only those which we get
from (i), (ii), and (iii).

Since polynomials are functions of L into L they are ordered by
the pointwise ordering {F' S G} = {vXe L, F(X) < G(X)}.

COROLLARY 4.4. Ewery unary polynomial of {(L; U, N,{F;:1e€I})
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s less tham or equal to ANX-luis(WZ - Z U (Uie: Fi(Z))X) and
greater than or equal to NX - llis WZ + Z N (Nier Fi(Z))(X).

Proof. Let F be MZ-(ZU(Uic; Fi(Z))) and F be MNZ-(ZN
(Nie: F(Z)), F and F are monotone maps on L into L. The proof
is by induction on the structure of unary polynomials:

(i) luis(F') is extensive and llis(F) is reductive so that for
every X of L we have llis (F)(X) S X < luis (F)(X).

(ii) Let P be a unary polynomial such that for every X of L
we have llis (F)(X) < P(X) < luis (F)(X). Then for every mono-
tone F,, we have F,(llis (F)(X)) S F(P(X))CF, (luis (F)(X)). But
Wis(F)YX)=F(llis(F)X))SF(llis(F)(X)) and dually F,(luis(F)(X))<
F(luis (F)(X)) = luis (F)(X) so that by transitivity Ilis(F)(X) <
F(P(X)) < luis (F)(X).

(iii) Let {P;:veJ} be a family of unary polynomials such that
for every Xe L, llis (F)(X) S P(X) < luis (F)(X) then by definition
of least upper bounds we have llis (F)X) S Uses P(X) < luis (F)(X)
and by definition of greatest lower bounds we have llis (F)(X) <
Nres P(X) < luis (F)(X).

The generalization of 4.4 to m-ary polynomials is immediate.

5. Constructive characterization of the set of fixed points of

F.

THEOREM 5.1. (Comstructive version of Tarski’s lattice theoreti-
cal fixed point theorem.) The set of fixed points of F is a nonempty
complete lattice with ordering <, infimum Iluis (F)(L), supremum
UWis (F)(T), least upper bound S -luis(F)US) and greatest lower
bound NS -1llis (F)(NS).

Proof. By Theorems 8.3 and 8.4, fp(F) is the image of
prefp (F) by the upper closure operator luis(F') and by Theorem
4.3 prefp (F') is a nonempty complete lattice so that by Ward [21]’s
theorem fp (F') is a nonempty complete lattice with ordering <,
infimum luis (F')(L) and least upper bound AS-luis(F')(US). By
duality, fo(F) is the image of the nonempty complete lattice postfp(F')
by the lower closure operator llis (F') so that the supremum of F is
lis (F)(T) and the greatest lower bound AS - llzs (F)(NS).

The construction of extremal fixed points of monotone operators
as limits of stationary transfinite iteration sequences may be found
in Devidé [7] (where Ifp (WZ - D U F(Z)) is the limit of the sequence
X' =D, X? = XU F(X°") for successor ordinals and X° = U.<; X*
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for limit ordinals) in Hitchcock and Park [8] (where Ifp (F') is the
limit of X° = 1, X° = .« F(X*) for every nonzero ordinal) and in
Pasini [15] (where transfinite sequences are defined as in Definition
2.1).

COROLLARY b5.2. Let D be an arbitrary element of L. luis(F')o
lis(MWZ - Z N\ F(Z)D) and Uis (F)eoluis(ZZ - Z U F(Z))(D) are fixed
points of F greater than or equal to any fixed point of F less than
or equal to D and less than or equal to any fixed point of F greater
than or equal to D. Moreover luis(F)ollis(NZ-Z N F(Z))(D) <
Uis (F)oluis WZ - Z U F(Z))D). -

Proof. Assume that A is a fixed point of F' less than or equal
to D and B a fixed point of F' greater than or equal to D, that is
F(A) = AZ DZ B = F(B). Then by monotony (3.4, 3.5) and fixed
point property A =luis (F)ollis(WZ o Z N F(Z))(A) < luis (F)o
Wis(NZ - Z N\ F(Z))D) < luis (F)ollis(NZ - Z N F(Z))B) = B. The
same way, A & lis(F)oluis(NZ - Z U F(Z)) D) < B.

Let Pbe llis(NZ - Z N F(Z))(D) and @ be luis WZ - Z U F(Z))(D).
Let S be {XeL:PS X < Q}. S is a complete sublattice of L with
infimum P and supremum . By 4.1 and its dual P < F(P) and
F(Q) £ Q so that F(S) = S. Then by 5.1 the least fixed point of F
restricted to S is luis (F')(P) and the greatest fixed point of F
restricted to S is [llis (F)(Q) proving that luis(F)ollis(NZ-Z N
F(Z)(D) C llis (F)oluis WZ - Z U F(Z))(D).

A lower preclosure operator 0 on L is monotone, idempotent and
satisfies the lower conmectivity axiom {vVX e L, o(X N (X)) = p(X)}.
An upper preclosure operator p on L is monotone, idempotent and
satisfies the upper connectivity axiom {vXe L, (X U p(X)) = p(X)}.

COROLLARY 5.3. The set fp (F') of fixed points of F is the image
of L by the lower preclosure operator luis (F')ollis WZ - Z N F(Z))
and the image of L by the wupper preclosure operator llis(F)o
luis(NZ - Z U F(Z)).

Proof. luis (F')ellis(MNZ - Z N F(Z)) is a lower preclosure opera-
tor since it is the composition of the upper closure operator luis (F')
and the lower closure operator llis (WZ - Z N F(Z)) (3.4, 4.1 and 3.5,
Ladegaillerie [12]). By duality llis (F)cluis(nZ-Z U F(Z)) is an
upper preclosure operator.

Cousot and Cousot [5] already used the idea of constructing (or
approximating) the fixed points of monotone operators by means of
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an upper iteration sequence followed by a lower iteration sequence.
This idea was also used by Manna and Shamir [13] and our results
3.3, 4.1, 5.2, and 5.3 improve their results obtained on the more
restricted model of continuous functional equations on functions of
flat lower semi-lattices.

6. Constructive characterization of the set of fixed points of a
family of commuting operators.

LEMMA 6.1. Let F and F be monotone operators on the mon-
empty complete lattice L(S, 1, T, U, N) into itself such that Fo F <
FoF and FC F (i.e., VX e L, F(F(X)) € F(F(X)) and F(X)Z F(X)).
The set of common fived points of F and F is a nonempty complete
lattice:

o (B, F)XS, Ifp (F), gfp (F), MS - luis (F)(US), S -Uis (F)(NS))
which is the image of L by luis (F)ollis(NZ «Z N F(Z)) and the
image of L by llis (F)oluis WZ-Z U F(Z)).

Proof.

6.1.1. VDec prefo (F), F(luis (F)D)) = luis (F)(D).

Since Deprefp(F) and FC F we have DC F(D) < F(D) so
that the upper iteration sequence (X? 6 ¢ ) for F starting with D
is stationary, its limit luis (F)(D) is a fixed point of F (3.3). Again
since F < F we have F(luis (F)(D)) € F(luis (F)(D)) = luis (F)(D).

Let us show that {viepy, X’ < F(X%}. For 6 =0 we have X’ =
D < F(X" since De prefp (F). Assume that the lemma is true for
all @ <6 < p. If 6 is a successor ordinal then in particular X°~' <
F(X*). Since F' is monotone and F o F < FoF we have by Defini-
tion 2.1(b), X* = F(X*™") € F(F(X’™) € F(F(X*™) = F(X%. If 6 is
a limit ordinal then X* < F(X*) for every a <d. By 2.1(c) and
monotony, X’ = U.<; X*S Uecs F( XS F(Uo<: X¥) = F(X°). By trans-
finite induction the lemma is true for every é ¢ t.

By 3.8, luis (F)(D) is the limit of (X?, 6 € ) so that luis (F)(D) <
F(luis (F)(D)). By antisymmetry we conclude that luis (F)(D) =
F(luis (F)(D)).

6.1.2. Let D be an arbitrary element of L, then by the dual
of Theorem 4.1, llis (NZ - Z N F(Z))(D) € prefp (F) < prefp (F) so that
Theorem 8.3 implies that luis (F)ollis(MZ-ZU F(Z))D) e fp (F). Also
by 6.1.1 luis (F)ellis(MZ-Z N F(Z))(D) e fo (F). Consequently
luis (F) o llis(NZ - Z N F(Z)XL) < fo(F) N fo (F) = fp(F, F) and
fo (F, F) is not empty (take D equal to L).

Let Pefp (F, F) then Pe L and luis (F)ollis (nZ - Z N F(Z))(P)
is equal to P since F(P) = P and F(P) = P. Therefore fp (F, F) <
Iuis (F)ollis (WZ - Z N F(Z))(L) so that by antisymmetry we conclude
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o (F, F) = luis (F)ollis(NZ - Z N F(Z))(L).

6.1.3. By 4.3 llis(WZ-Z N F(Z))(L) is a nonempty complete
lattice prefp (F)S, L, gfp (F), U, AS-Uis WZ+-Z N F(Z))(NS)). By
3.4 luis (F') is an upper closure operator so that by 6.1.2 and Ward
[21]'s theorem fp (F, F') is a nonempty complete lattice with ordering
<, infimum luis (F)(L) = Ifp (F') and least upper bound operation
S - luis (F)(US).

The remaining parts of Lemma 6.1 are obtained by duality,
fo(F, F') is the image of the nonempty complete lattice postfp (F')
(S, Ufp (F), T,AS-luis(MZ - Z U F(Z))(US), N) by the lower closure
operation llis (F') so that the supremum of fp (F, F') is llis (F)(T) =
ofp (F) and the greatest lower bound operation is \S:1llis (F)(NS).

THEOREM 6.2. (Constructive version of Tarski’s gemeralized
lattice theoretical fixed point theorem.) Let {F,.1i¢€I}be a nonempty
Jamily of monotone commuting operators on the nonempty complete
lattice L(<, L, T, U, N) into itself. The set of all common fixed
points fo {Fi:iel}) of all the operators {F;:i€l} is a nonempty
complete lattice with ordering <, infimum lfpo OWZ - U;.; Fi(Z)),
supremum  gfo WL« Nier F(Z)), least wupper bound operation
AS cluis (WZ - Ui Fi(Z))(US) and greatest lower bound operation
AS - Uis (WNZ - Nier FU(Z))NS).

Proof.

6.2.1. Let F' be NZ-U;c; Fi(Z) and F be ANZ-Nic; Fi(Z). F
and F are monotone operators on L into itself such that F C F.
vXeL, Viel, we have F(F(X)) = U;e; Fi(F (X)) = Use;: F(F3(X)) S
F(U;e; Fi(X)) = F(F(X)) by monotony and the commuting property.
Therefore VXeL, F(F(X)) = F(Ni; F(X)) S Nie; FF(X)) <
N..; F(F(X)) = F(F(X)). ~

6.2.2. Clearly fp {F:tel}) < fp(F, F)since {Vie l, F(X) = X}
implies F(X) = U;e; FiX) = Uie; X =X and dually F(X) = X.
Whenever Xefp(F,F) we have Viel, X = F(X) = N;: Fi(X) &
F(X) and dually Fy(X) S Uje; Fi(X) = F(X) = X so that by anti-
symmetry X = F(X) and fp(F,F)Z fo({F;:iel}). By antisym-
metry fp (F, F) = fp ({F:: i € I}) so that by Lemma 6.1, fp ({F:ic I})
is a complete lattice (<, Ifp (F), gfp (F), S - luis (F)(US), AS -
lis (F)(NS)).

COROLLARY 6.3. Let D be an arbitrary element of L, then
lwis WL s Uier F(Z)) o llis(NZ - Z N (Nier FA(Z0N)D) and llis (MZ -
Nic: FZ))oluis WZ - Z U (Uie; FA(Z)ND) are common fixed points
of the F;, ie I which are greater than or equal to any common fixed
point of the F; less than or equal to D and which are less than or
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equal to any common fixed point of the F; greater than or equal to
D. Moreover

luis (N2 - U F(Z))ellis W& - Z 1 (N F(2))(D)
S Uis (V2 - N F(Z)) - luis (Z - Z U (U F(Z))D).

COROLLARY 6.4. The set fp ({F;:iel}) of common fixed voints
of the family {F;:i€ I} is the image of L by the lower preclosure
operator luis (WZ+ Uie; Fi(Z))ollis WZ - Z N (Nser F(Z))) and the
image of L by the upper preclosure operator WisANZ(Nie: Fi(Z))o
luis Wz - Z U (Uier Fi(2)))-

Let {F;: 1€ I} be a finite family of monotone commuting operators
on the complete lattice L into itself. If we assume that I is
well-ordered (i.e., I ={i,; @ =<7} where vew) then we denote
Nz Fo(Fy(e+ Fo(Z) +++)) bY Oics F

Applying Theorem 5.1 to O,.; F; and Theorem 6.2 to {F:i¢c I}
a natural question is whether fp (O e; Fi) =fp {F:vel}). The
answer is affirmative thanks to the following:

THEOREM 6.5.
luis (N Z - ieUIFi(Z)) ollis(NZ - Z N (IQ F(Z)))
= luis (i(e)I Fyollis(WZ-ZnN (iCe)I F)(Z))
llis (\Z - Q Fy(Z))oluis(WZ - Z U (ly F(Z)))
= ll;s (O F)oluis(WZo Z U (O F(Z))).

iel iel

Proof. It is sufficient to prove that if D is a prefixed point of
each F';such that 7 € I then luis WZ « Ui Fi(Z)(D) = luis (Oyer F)(D).
Since {vie I, D < F,(D)} we have by monotony and the commuting
property D < (O,e; F)(D) and Theorem 3.3 implies that P =
is(Qier Fi)X(D) = (Ouer F)(P) and D S P. For every jel we have
DS Fy(D) S FyP) = Fi((Oic; F)(P) = (Oser F)(FiP).  Therefore
F;(P)is a fixed point of OQ,.; F;, greater than or equal to D so that
by Theorem 8.8 {Vje I, PCF;P)}. Then by monotony and transitivity
PSS F,(P)S Fy(--+ Fy (P)-++) S (Ouer Fi)(P) = Psothat vjel, P =
F;(P). P is a common fixed point of the family {F,: 7€ I} greater
than or equal to D. Let @ be another common fixed point of
{F,:i€I} greater than or equal to D. Then (O, F))®Q) = Q@ so
that by Theorem 3.3 we have P & @. Hence P is the least common
fixed point of the family {F:7c I} greater than or equal to D.
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By Corollary 6.3, B = luis WZ - UJ,e; Fi(Z))(D) is a common fixed
point of {F;:ie I} greater than or equal to D. Let @ be another
common fixed point of {F,:i¢€ I} greater than or equal to D. Then
Ui Fi(Q) = Q@ so that by Theorem 8.3 we have R < Q. Hence R
is the least common fixed point of the family {F:7¢€ [} greater than
or equal to D.

By existence and unicity of the least common fixed point of
the family {F,:71e¢lI} greater than or equal to D, we conclude
is(Oie F)(D) = P= R = lwis N2 - Uie; FI(Z)(D).

7. Fixed point theorems for continuous operators. An
operator F' on the complete lattice L into itself is wpper-semi-con-
tinuwous if and only if for every ordinal 6 < @ and every o-termed
increasing chain {(C* a €0y of elements of L we have F(J,.; C*) =
U..; F(C*). The dual notion is the one of lower-semi-continuous
operator. An operator is conmtinuous when it is lower and upper-
semi-continuous.

Since semi-continuity implies monotony the results of paragraphs
3, 4, and 5 can be applied to continuous operators. However the
proofs are simplified since one can consider (w + 1)-termed iteration
sequences. For example, Theorem 8.3 can be reformulated as
follows:

THEOREM 7.1. Let F be an upper-semi-continuous operator on
the complete lattice L into itself. Am wupper iteration sequence
(X’ demin (i, ® + 1)) for F starting with Deprefp(F) is a
stattonary increasing chain, its limit luis (F)(D) is the least of the
fizxed points of F greater than or equal to D.

Proof. When ft > @ + 1 Definition 2.1, Theorem 3.3 and upper-
semi-continuity imply X' = F(X°) = F(Uxco X% = Uwco F(X*) =
Uico X S Uaco X = X°.  Also by Theorem 3.3, X* & X' so that
by antisymmetry X°® = X“*'. Then by transfinite induction it is
easy to show that {VB:w =< 8 < 4, X* = X?}.

When considering a family of commuting monotone operators
the results of paragraph 6 can be perfected as follows:

LEMMA 7.2. Let F and F be uppe'r-semi—contz'nuous operators
on the complete lattice L imto itself such that FoF S FoF and
FC F. Then for every prefized point D of F we have:

{F(D) = F(D)} == {luis (F)(D) = luis (F)(D)} .
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Proof. Let (X’ demin(w + 1, #)) and <{Y’ demin(® + 1, 1))
be respectively the upper iteration sequences for F' and F starting
with the prefixed point D of F and F.

For 6 = 0 we know by hypothesis and 2.1(a) that D = X° = Y° C
F(X°) = F(Y").

Assume that d e min (®w + 1, ¢£) is a successor ordinal such that
X' =Yt and F(X°™) = F(Y°™"). Then by 2.1(b) X’ = F(X*™") =
F(Y*™) and F(X*") = F(Y’™") = Y? so that by induction hypothesis
and transitivity X’ = Y°. Also since F C F and X’ = Y* we know
that F(Y?) S F(X’). Since FoF'C FoF and X’ = Y*' we know that
F(F(X°) < F(F(Y°™")) so that by Definition 2.1(b) we get F(X’) <
F(Y?). By antisymmetry we conclude F(X°) = F(Y°).

Assume that d e min (w + 1, ¢) is a limit ordinal then ¢ = w. If
by induction hypothesis {Vv8 < w, X! = Y? and F(X?) = F(Y?) then
by 2.1(c) and definition of least upper bounds we have X =
Ueco X* = Urco Y* = Y*. The same way by upper-semi-continuity,
F(X°) = F(Ue<o X*) = Ueco F(X*) = Ur<o F(Y*) = F(Uu<o ¥Y*) = F(Y°).

By transfinite induction and Theorem 7.1 we conclude
luis (F)(D) = luis (F)(D).

As an application of Lemma 7.2 for D = 1, we get:

THEOREM 7.3. Let {F;. 1€ I} be a family of commuting operators
on the complete lattice L into itself. Then {{Vie I, F, is upper-semi-
continuous} and {Vi, jel, Fi (L) =F(L)}}={Vi, jel, Ifp (F,) =
lfp (F3)}.

8. Remark., In our proofs it is the existence of lower or
upper bounds of chains and not the existence of lower or upper
bounds of arbitrary sets that is crucial. The same remark was
made by numerous authors who generalized Tarski’s fixed point
theorem to weaken the completeness hypothesis (see among others
Abian and Brown [1], Hoft [9], Pasini [15], Pelczar [16], Markowsky
[14], Ward [20], Wolk [22]). This was also the case for Tarski’s
fixed point theorem on commuting maps (see a.o., DeMarr [6],
Markowsky [14], Pelczar [17], Smithson [18], Wong [23]). Along
the same lines our results could be strengthened to be applicable
to partially ordered sets which are not complete lattices.
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