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A COMBINATORIAL PROBLEM IN FINITE FIELDS, I

GERALD MYERSON

Given a subgroup G of the multiplicative group of a
finite field, we investigate the number of representations
of an arbitrary field element as a sum of elements, one
from each coset of G. When G is of small index, the theory
of cyclotomy yields exact results. For all other G, we obtain
good estimates.

This paper formed a portion of the author’s doctoral
dissertation.

Let p =2n + 1 be an odd prime. Consider the 2" sums repre-
sented by the expression

+1+2+3 £ tn.

How do these sums distribute themselves among the residue classes
modulo p? The answer is, as uniformly as possible; in fact, if we
define N(a) as the number of ways of choosing the signs so that
+1 42+ ... +n = q(modp) then we have

THEOREM 1.

N(a) = %(2% — (%)) for a # 0 (mod p)

w0 -1 - (2) + (2).

Here (2/p) is the Legendre symbol, that is,

( 2 > _ il if 2 is a quadratic residue (mod p)

P —1 if 2 4is not a quadratic residue (mod p) .

Our proof of Theorem 1 will rest on the following lemmas.

LEMMA 2. If ab #= 0 (mod p) then N(a) = N(b).

Proof. Assume >, w,k = a (mod p), with u,e{l, —1}. Since
ab # 0 (mod p) there is a ¢ such that ac = b (mod p). Thus we have
S uck = b(mod p). Now for k=1,2, ---, n, let ck=w,/m, (mod p),
where 1 < m, £ n, w,/c{l, —1}; these conditions determine m, and

u;, uniquely. Thus,

b

n n n
kz—‘i wchk = kz—1 WMy, = kzﬂuk”m,c (mod p) ,
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with
u, {1, —1}.

Now, the m, are all distinet: if m, = m,, then ¢k = + ch (mod p), so
k= +h(modp), so k=h (since L=<k =<=mn,1=<h=mn). Therefore,
b= 7", u,m, (mod p) is a representation of b, corresponding to our
original representation of a. Multiplication by ¢’, where ¢’ =1
(mod p), returns us to the original representation of a. We have
established a one-to-one correspondence between the set of represen-
tations of a and the set of representations of b, and this shows
that N(a) is independent of a for a == 0 (mod p).

Now let N denote the common value of N(a), a = 0 (mod p),
and note that

N@©) + (p — )N = 2"

by counting the total number of expressions two different ways.
We now obtain a second linear relation between N(0)’and N through
the use of a generating function. Let ¢ be any primitive pth root
of unity.

LEMMA 3. TI2..(6* + 07%) = 7=t N(a)6* = N(0) — N .

Proof. In expanding the product into a sum of powers of ¢
each term is of the form @**** =" The number of occurrences
of 6,0 < a < p—1, is therefore the number of choices of signs for
which +1+24 --- =7 = a (mod p), which is N(a). This proves
the first equality. The second follows from Lemma 2 and the ob-
servation that 3722 6° = 0.

If we can evaluate T[7., (6 + 67%) then we will have two equa-
tions for N(G) and N.

LEMMA 4.
1@+ 0% =(2).
k=1 p

Proof. 0+ 67 is a unit in the ring of integers in Q(6); in fact,
O+ 670 + 6 + 6+ --- +6*) =1. The numbers 6*+ 7% are
conjugate to 0 + 07, thus are also units; hence, [[7-, (6" + 67%) is a
unit. By Lemma 3 this product is a rational integer, hence it
must be 1 or —1. We have
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]ﬁl(ak £ 6% =N@O) — N, (Lemma 3)

N(0) — N = N(0) + (p — 1)N (mod p) ,
N©O) + (p — )N = 2",

2" = <£> (mod p) (Euler’s criterion).
VY

Thus Tz, (6" + 67%) = (2/p) (mod »); but since the product must
equal 1 or —1, it follows that Iy, (6% + 67%) = (2/p).

Proof of Theorem 1. We now have two linear equations in
N(0) and N;

NO)+ (p —1)N = 2",
2
NO —N=(Z),
(0) (p)

where the second equation is a consequence of Lemmas 3 and 4.
Simultaneous solution of these equations yields Theorem 1.

We now present a generalization of the problem solved above;
the remainder of this paper is an attempt to solve the generalized
problem. We fix the following notation: ¢ and f are positive inte-
gers such that ef +1 =q = p* is a prime power, and F, is the
field of g elements. The multiplicative group of units of F,, denot-
ed F?, is generated by the primitive element g. The subgroup G,
consisting of all the eth powers in F?, is generated by g¢°. The
cosets of G in F? are denoted and defined by G, =¢*G, k=0,1, ---,
e — 1. In particular, G, =G. For each zeF, define N(x) to be
the number of solutions of >zt s, =z, with s, @G,; that is, N(x)
is the number of representations of x as a sum of elements, taking
precisely one from each coset. N(x) depends, of course, not only
on x but on ¢ and f as well; it is, however, independent of the
choice of the generator for F;.

With this notation, our problem is, find N(x).

We note that the case ¢ = (p — 1)/2, f = 2, where p is prime, is
our original problem; if ¢ =(p — 1)/2 then ¢g*°= -1, G = {1, —1},
and the cosets of G are the sets {k, —k}, k=1,2, ---, (p — 1)/2.

We now try to solve our new problem by following the solution
of the old one. We first note that if s, € G, and s,e @G, then s;'e
G_, and s,s, € Gy,;, where the subscripts are to be reduced mod e.

LeMMA 5. If xy # 0, then N(x) = N(y).
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Proof. Assume >\'s,=2x,5,€G,. Since ay =0 there is a
2€ F; such that zz = y. Thus, >}i=, #s, = y. But multiplication by
2z merely permutes the cosets G,, so this gives a representation of
y. Multiplication by 2, where 2z’ = 1, returns us to the original
representation of x, so we have a one-one correspondence between
the two sets of representations.

Now let N denote the common value of N(zx),x # 0, and note
that

(1) N(@©) + (¢ — DN = f,

by counting the number of sums >\t s,, s,€G,, in two different
ways.

To generalize Lemma 8 we need an analogue for the expressions
0t + 0%, Letting 6 be a primitive complex pth root of unity we
define the periods 7, = 3,,cq,0™°, k=0,1,---,e —1. Here Tr is
the trace map, T7r: F, — F,; the elements of F,~ Z/pZ are identi-
fied with representatives of the cosets of pZ in Z; the value of
#7* is independent of the choice of representative since #* = 1. We
note that 7, depends on the parameters ¢ and f, and also on g:a
different choice of ¢ would permute the 7, among themselves. Note
that in the case g=p we can simply define 7,=3,.4, 6% k=0,1, ---,
e — 1. In particular, if f = 2 the periods are seen upon renumber-
ing to be the numbers 7, = 6* + 6% of our previous discussion.

LeEMMA 6. [1iZ 0 = Dlper, N(@)0™™ = N(@0) — N.

Proof. In expanding the product into a sum of powers of ¢
each term is of the form, g'rteteetteed g c@G,. The number of
ocecurrences of #77% is therefore the number of representations of x
as >uts,, s,€G,, which is N(z). This proves the first equality.
The second follows from Lemma 5 and the observation that

Z grre = (),
zeFy .

Lemma 6 gives a linear relation between N(0) and N which,
together with (1), can be used to evaluate N(0) and N if we can
evaluate T[:Z7.. For fixed values of e, it is often possible to
obtain formulas for [];=} %, using the theory of cyclotomy.

In the next section, we give the definitions and quote the theo-
rems we need from cyclotomy. The reader is referred to [7] for
a detailed exposition with proofs.

Cyclotomy. We begin by defining the cyclotomic constants.
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DEFINITION. The cyclotomic constant (k, k) is the number of
elements se€ G, such that 1 + s€@G,.

The constants (k, h) depend on our parameters ¢ and f; also, a
different choice of generator g, by permuting the cosets G,, will
permute the constants (%, ). Their importance in the problem under
consideration stems from the next two propositions.

PROPOSITION 7. %), = >uzs (k, b)), + fn,, where n, ts defined
by
n, =1 if f is even ,
n=11i p=2,
Nep = 1 4f f and p are odd ,
n, = 0 in all other cases .

PROPOSITION 8. %pWmir = Duico By B)Dpin + f, where the sub-
seripts are to be interpreted modulo e.

Repeated applications of Propositions 7 and 8 will enable us to
evaluate II7,, provided we know the constants (%, k).

The constants are given, in the cases ¢ = 2,3, and 4, by the
following theorems.

PROPOSITION 9. (Dickson [3, p. 48]). Assume ¢ = 2.
If f 1is even, the cyclotomic matric M® 1is given by M® =
(A B), where 44 = q — 5, 4B = q — 1.

B B
If 7 is odd, M® = (j i), where 4A = q — 84B = q + 1.

ProOPOSITION 10. (Storer [7,p. 85]). Let e =8. Let ¢ and d
be defined by 4q = ¢* + 27d*, ¢ =1 (mod 3), and, if » =1 (mod 3),
then (¢, p) = 1; these restrictions determine ¢ uniquely, and d up
to sign. Then

ABC I =g¢—8+40,
M® =| BCD ,whe're 183=2q——4——c—9d,

D=q+1+c.

PROPOSITION 11. (Storer [7, pp. 48, 51]). Let e = 4. Let s and
t be defined by q =s*+ 4%, s =1 (mod4), and, if p = 1 (mod4),
then (s, p) = 1; these restrictions determine s uniquely, and t up to
Sign.
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If f is even, then
164 = ¢ — 11 — 6s
16B=q — 3+ 25 + 8¢,

ABCD

BDEE
M® — CECE where ﬁgiq_?‘;:?’ 8t
DEEB =4 s ’

16E=qg+ 1 — 2s.
If f is odd, then
16A =q — 7+ 2s,
4 BCD 168 q+li2s+8t
= 3 R
M* = EEBD where 1GC—q+1—63
“\AEAE —1 ‘
16D =qg+ 1+ 2s — 8¢,
EDBE
16 =qg — 3 — 2s.

Solutions in the cases ¢ = 2, 3, 4.
We can now evaluate 777,, N(0), and N in the cases ¢ = 2, 3, 4.

THEOREM 12. Let e = 2. If f is even, then

9=l Noy—=0, N=9=1
770771 4 ’ ( ) ] 4 .

If f is odd, then

B g

_g+1 N(O) = qg—1 N—2—3
7]07]1 4 b () 2 4 .

THEOREM 18. Let ¢ =38. Let ¢ be defined by 4q = ¢ + 2747,
¢ = 1(mod 3), and, if p = 1(mod 3), then (¢, ») = 1. Then

_ 1 _
N = -27((c +3)g¢—1),

_ 1 _
N(0) = 2——7(q +1+e)g— 1),

1
= — 2 3 —_— .
N 27(q q— o)

THEOREM 14. Let ¢ = 4. Let s be defined by q = s* + 4%, s =
1(mod 4), and, if » = 1(mod 4), then (s, p) =1. If f is even, then

1 1
= = (g® — (48 — DN =_ ({0 — 12 — —1)
U/ 256(q (45 — 8s + 6)q + 1) 256(((1 ) — 4q(s—1)") ,

N(0) = 2—;é<q -3+ 29+ 1 — 25,
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1
N=_—"(¢*—4¢*+ 5 45 — 8s + 2) .
256(«1 ¢ + 5q + )
If f is odd, then

1 1
)y = - 99° — 2 -2 1) = 1) — 1\ ,
N/ 256( " — (48 — 85 — 2)q + 1) 2—56((3q+ ¥ —4q(s— 1))

NQ) = 2—;—6@ 1) g +5— 25+ 1+ 29,

1, .,
=~ (¢® — 40° — 2 _8s —6).
N 256((] 4¢®> — 3q + 4s* — 8s )

Proof. Straightforward calculation yields the results on 77,.
We present the case ¢ = 3 as an example.
By Propositions 7 and 10, we have 7,9,=Bn,+ C»,--Dyn,, whence

(7707}1)772 = B(770772) + C(7717]z) + D(yfz)z
= B(Cn,+ D, + Bn,) + C(D,+ By, + C1,) + D(B9y+ Cy + ANy + f)
= (BC+CD+ BD)9,+(BD+ BC+CD)p, +(B*+ C*+ AD)p,+ 7D .

Substituting for A, B, C, and D the values given in Proposition 10,
and simplifying via 4qg = ¢* + 27d?, we find

219, = (@ — 3¢ — ) + N + ) + (@—1+cqg—c)
=—(—3¢—0)+(@—1+eq—c)
=(+3)q—1.

The results an N(0) and N then follow from the simultaneous
solution of

N@) + (g — )N = f°,
N@-N:ﬁm.

Some special results and some approximations. We present
two results of a more specialized nature.

THEOREM 15. If q and f are both odd them N(0) > N.

Proof. If ¢ and f are both odd then —1€G@,,. Thus for any
kE,O0<k<e?2 ze@G, if and only if —xe€G,..,. Then

7]k+e/2 — Z 0T'r:c — Z 0Tr(—z) — Z 0—Tr:c — i]—k ,

TeCGlte/2 2eCGp zeGp

where the overbar indicates complex conjugation. It follows that
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e/2—1 e/3—1

ﬁﬂksnﬁkﬁkzﬂlﬁk|2>0.
k=0 k=0 k=0
But by Lemma 6, N(0) = N + IT:2 7.

THEOREM 16. Let e =4. If q —1 is a square, then N(0) — N
18 a square.

Proof. By hypothesis, ¢ =1 + 4¢% thus, we can take s =1 in
Theorem 14. If f is even then

N0 - =i = (151

if f is odd then

NO) - N=T7 = (3D

k=0 16
Estimates for II7), and N(x). Cyclotomy for ¢ > 4 has been of
continuing interest to mathematicians. The reader is referred to
[2] for the cases ¢ = 5,6, and 8; also to [9], [10], [4], [8], [1], and
[5], for the cases e¢ = 10, 12, 14, 16, 18, and 20, respectively. In each
of these only the case ¢ = p is discussed. When the problems of
cyclotomy have been solved for a given value of ¢, the methods of
the proof of Theorem 13 will evaluate 77, — see, e.g., [6], for the
case ¢ = b5,¢ = p. The computations involved are ghastly, as the
reader can convince himself by inspecting the references cited
above. The author feels that the importance of finding exact ex-
pressions for N and N(0) is not sufficient to justify performing
these computations. We present instead approximations to N and

N(0), based upon a lemma from cyclotomy.

LEMMA 17. (a) If either f or p is even, then
Sp=q—7.
k=0
(b) If f and p are both odd, then
é%’?kﬂ/z =q—f.
Proof. These are both special cases of Lemma 9 in [7].
LEMMA 18. (a) If either f or p 1s even them 7, is real, k =

0,1, ---,e — 1.
(®) If f and p are both odd then 7,79,.., 18 real and positive,
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k=01, —1.

Proof. (a) If fis eventhen —1¢@G,. Thus if re G, then —xcG,,
and x  —x. Hence, if ™" appears in 7,, so does #7"~* ===,
Thus, 7, is real. If pis even then p=2. Thus §=—1 and 7, is real.

(b) This was shown in the proof of Theorem 15.

THEOREM 19. |Hi_=10 77k| < (g —=1)e)% INOY—flg| < (g —f)le)”;
IN — flg| = 7@ — f)le)”.

Proof. If either f or p is even then >\iZi 7% =¢q — f. If both
f and p are odd then 3=\ %.%i... = ¢ — f. In either case we may,
by Lemma 18, apply the inequality of the arithmetic and geometric
means. We obtain [[iZ 7 = (g — ffe), or [Tzt .| = ((g — f)le)*
The other two inequalities follow from the first and from the

relations N(0) + (¢ — 1)N = f°, N(0) — N = I[iZ 7.

The reader is encouraged to compare the approximations of
Theorem 19 with the exact results of Theorems 12, 13, 14 bearing in
mind that ¢ in Theorem 13 and s in Theorem 14 can be as large as
21 q or Vq, respectively. The approximations are seen to be

quite sharp.
The problem of evaluating /Iy, as q varies with f, rather than
e, held fixed requires very different methods from those of Theo-

rems 12, 13, and 14, We treat this problem in [11].
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