Pacific Journal of Mathematics

WORD EQUATIONS IN A BAND OF PATHS

JAMES NELSON, JR. AND MOHAN S. PUTCHA

Vol. 82, No. 1

January 1979

WORD EQUATIONS IN A BAND OF PATHS

JAMES NELSON, JR. AND MOHAN S. PUTCHA

In this paper we introduce a multiplication of paths which yields an idempotent semigroup. We study the properties of this band and solve all word equations in this band.

Multiplying paths in a topological space by concatenation is a classical idea in algebraic topology. However, in \mathbb{R}^n , identifying up to homotopy trivializes all paths. There are many ways of obtaining associativity with less identification. Looking only at the images of the paths in \mathbb{R}^n , yields an inverse semigroup (cf. [6]). Lesser identifications lead to semigroups which locally resemble free semigroups [4, 5].

1. Preliminaries. Throughout this paper, R_0 , R, Z^+ will denote the sets of nonnegative reals, reals and positive integers, respectively. If S is a semigroup, then $S^1 = S$ if S has an identity element; $S^1 = S \cup \{1\}$ with obvious multiplication if S does not have an identity element. For basic notions of semigroups, see [1].

We will let \mathscr{U} denote the set of all strictly increasing continuous self-maps ϕ of [0,1] with $\phi(0) = 0$ and $\phi(1) = 1$. Let $n \in Z^+$ remain fixed throughout this paper and let \mathscr{M} denote the set of all rectifiable, continuous functions f from [0,1] into \mathbb{R}^n such that f(0) = 0 and f is not constant on any subinterval of [0,1]. If $f \in \mathscr{M}$, then let l(f) denote the length of f. If $f, g \in \mathscr{M}$, then let $f * g \in \mathscr{M}$ be defined by

$$f * g(x) = egin{cases} f(2x) & , & 0 \leq x \leq 1/2 \ f(1) + g(2x-1) \ , & 1/2 \leq x \leq 1 \ . \end{cases}$$

For $f, g \in \mathcal{M}$, define $f \equiv g$ if $g = f \circ \phi$ for some $\phi \in \mathcal{V}$. Note that if $f \equiv g$, then l(f) = l(g). Intuitively, considered as a function of time, we are interested in the way our path is traced but not the speed. \equiv is an equivalence relation on \mathcal{M} . Let $\overline{\mathcal{M}} = \mathcal{M} | \equiv$. The operation * defined above remains well defined on $\overline{\mathcal{M}}$ and $(\overline{\mathcal{M}}, *)$ is a cancellative semigroup [4]. (Note that in [4], * was not used to denote this operation.) If $f \in \mathcal{M}$, then let \overline{f} denote the equivalence class of f and define $l(\overline{f}) = l(f)$. Then $l(\overline{f})$ is well defined. Let $f \in \mathcal{M}$. For $\alpha \in (0, 1]$, define $g(\alpha) = l(f_{[0,\alpha]})$ where $f_{[0,\alpha]}$ denotes the path from 0 to α (cf. [4]); g(0) = 0. By the usual arguments of analysis, g is continuous. So for any $\beta \in (0, l(f))$, there exists $\alpha \in$ (0, 1] such that $l(f_{[0,\alpha]}) = \beta$. Let $\mathscr{B} = \overline{\mathscr{M}}^1$ and set l(1) = 0. It follows from the above that for any $a \in \mathscr{B}$, $\alpha \in [0, l(a)]$, there exist $b, c \in \mathscr{B}$ such that a = b * c, $l(b) = \alpha$, $l(c) = l(a) - \alpha$. Also note that for any $a, b \in \mathscr{B}$, l(a * b) = l(a) + l(b). Let $a, b, c, d \in \mathscr{B}$ such that a * b = c * d, l(a) = l(c). Then by [4], a = c and b = d.

We now define a new operation on \mathscr{B} . Let $a, b \in \mathscr{B}$. First assume $l(a) \leq l(b)$. Let $a = a_1 * a_2$, $b = b_1 * b_2$ where $l(a_1) = l(a_2) = l(b_1)$. Then define $ab = a_1 * b_2$. Next assume $l(b) \leq l(a)$. Let $a = a_1 * a_2$, $b = b_1 * b_2$ where $l(a_2) = l(b_1) = l(b_2)$. Then define $ab = a_1 * b_2$. From now on when we talk about \mathscr{B} , it is to be understood that we are talking about \mathscr{B} with respect to the operation just defined. Visually we can think of the paths colliding and exactly half of the smaller path and an equal part of the larger path destroying each other. Applications, outside of mathematics, of this and similar models will be developed at a later date.

THEOREM 1.1. \mathscr{B} is a band (idempotent semigroup) with identity 1. For any $a, b \in \mathscr{B}$, $l(ab) = \max. \{l(a), l(b)\}$. For any $a \in \mathscr{B}$, $\mathscr{B}_a = \{b | b \in \mathscr{B}, l(a) = l(b)\}$ is the rectangular band component of a. \mathbf{R}_0 , with reversed order, is the maximal semilattice image of \mathscr{B} and l is the corresponding homomorphism.

Proof. First we show that \mathscr{B} is associative. Let $a, b, c \in \mathscr{B}$. We will show (ab)c = a(bc). First assume $l(a) \leq l(b) \leq l(c)$. There exist $a_1, a_2, b_1, b_2, b_3, c_1, c_2, c_3 \in \mathscr{B}$ such that $a = a_1 * a_2, b = b_1 * b_2 * b_3$, $c = c_1 * c_2 * c_3$, $l(a_1) = l(a_2) = l(b_1) = l(c_1)$, $l(b_2) = l(c_2)$ and $l(b_1 * b_2) = l(b_3)$. Then $ab = a_1 * b_2 * b_3$ and $(ab)c = a_1 * b_2 * c_3$. Also $bc = b_1 * b_2 * c_3$ and $a(bc) = a_1 * b_2 * c_3$. So a (bc) = (ab)c. Next assume $l(a) \leq l(c) \leq l(b)$. There exist $a_1, a_2, b_1, b_2, b_3, c_1, c_2 \in \mathscr{B}$ such that $a = a_1 * a_2, b = b_1 * b_2 * b_3$, $c = c_1 * c_2$, $l(a_1) = l(b_1) = l(a_2)$, $l(b_3) = l(c_1) = l(c_2)$. Then $ab = a_1 * b_2 * b_3$ and $(ab)c = a_1 * b_2 * c_2$. Also $bc = b_1 * b_2 * c_2$ and a $(bc) = a_1 * b_2 * c_2$. So (ab)c = a(bc). This takes care of the case when a has smallest length. The case when c has smallest length is dual. So we are left with the case when b has smallest length. By right-left duality, we can assume $l(b) \leq l(a) \leq l(c)$. There exist $a_1, a_2, a_3, b_1, b_2, c_1, c_2, c_3 \in \mathscr{B}$ such that $a = a_1 * a_2 * a_3$, $b = b_1 * b_2$, $c = c_1 * c_2 * c_3$, $l(a_1) = l(a_2 * a_3) = l(c_1 * c_2)$ and $l(b_1) = l(b_2) = l(c_1) = l(a_3)$. Then $ab = a_1 * a_2 * b_2$ and $(ab)c = a_1 * c_3$. Also, $bc = b_1 * c_2 * c_3$ and a $(bc) = a_1 * c_3$. So (ab)c = a(bc) and \mathscr{B} is associative. It is clear that $a^2 = a$ for all $a \in \mathscr{B}$ and so \mathscr{B} is a band. It is also clear that $l(ab) = \max\{l(a), l(b)\}\$ for all $a, b \in \mathscr{B}$. Let $b, c \in \mathscr{B}_a$. Then l(b) = l(c). There exist $b_1, b_2, c_1, c_2 \in \mathscr{B}$ such that $b = b_1 * b_2$, $c = c_1 * c_2$ and $l(b_1) = l(b_2) = l(c_1) = l(c_2)$. So $bc = b_1 * c_2$ and $bcb = b_1 * b_2 = b$. So each \mathscr{B}_a is a rectangular band.

Conversely if R is any subrectangular band of B containing a

and if $b \in R$, then bab = b so $l(b) = \max\{l(a), l(b)\}$, and hence $l(b) \ge l(a)$. Similarly aba = a implies $l(a) \ge l(b)$, so l(b) = l(a) and $R \subseteq B_a$.

LEMMA 1.2. Let a, b, $c \in \mathscr{B}$ such that $l(b) \leq l(a)$ and $l(b) \leq l(c)$. Then abc = ac.

Proof. By symmetry, assume $l(a) \leq l(c)$. There exist $a_1, a_2, b_1, b_2, c_1, c_2, c_3 \in \mathscr{B}$ such that $a = a_1 * a_2, b = b_1 * b_2, c = c_1 * c_2 * c_3, l(a_1) = l(c_1 * c_2) = l(a_2)$ and $l(b_1) = l(b_2) = l(c_1)$. So $bc = b_1 * c_2 * c_3$ and $a(ab) = a_1 * c_3$. Also, $ac = a_1 * c_3$. So a(bc) = ac.

LEMMA 1.3. Let $a, b, c \in \mathscr{B}$ such that $l(a) \leq l(b) \leq l(c)$ and ac = bc. Then ab = b and there exists $a' \in \mathscr{B}$ such that l(a) = l(a') and c = a'bc.

Proof. Let $a = a_1 * a_2$, $b = b_1 * b_2 * b_3$, $c = c_1 * c_2 * c_3$ with $l(a_1) = l(a_2) = l(b_1) = l(c_1)$, $l(b_2) = l(c_2)$ and $l(b_1 * b_2) = l(b_3)$. Then $ac = a_1 * c_2 * c_3$ and $bc = b_1 * b_2 * c_3$. So $a_1 = b_1$ and $b_2 = c_2$. Thus, $ab = a_1 * b_2 * b_3 = b_1 * b_2 * b_3 = b$. Let $a' = c_1 * a_2$. Then l(a) = l(a') and $a'b = c_1 * b_2 * b_3$. So $a'bc = c_1 * b_2 * c_3 = c_1$.

Following is the right-left dual of Lemma 1.3.

LEMMA 1.4. Let a, b, $c \in \mathscr{B}$ such that $l(a) \leq l(b) \leq l(c)$ and ca = cb. Then ba = b and there exists $a' \in \mathscr{B}$ such that l(a) = l(a') and c = cba'.

LEMMA 1.5. Let a, b, $c \in \mathscr{B}$ such that abc = b. Then for $d \in \mathscr{B}$, the following are equivalent.

(1) adc = b and l(d) = l(b).

(2) d = a'bc' for some $a', c' \in \mathscr{B}$ with l(a) = l(a') and l(c) = l(c').

Proof. First note that $l(a) \leq l(b)$ and $l(c) \leq l(b)$.

(1) \Rightarrow (2). By Lemma 1.2, ad = adcd = bd. Similarly dc = db. By Lemmas 1.3 and 1.4, there exists $a', c' \in \mathscr{B}$ such that l(a) = l(a'), l(c) = l(c') and d = a'bd = dbc'. So d = a'bdbc' = a'bc'.

(2) \Rightarrow (1). Clearly l(d) = l(b). By Lemma 1.2, adc = aa'bc'c = abc = b.

LEMMA 1.6. Let a, b, c, $d \in \mathscr{B}$ such that $l(b) \ge l(a)$, $l(c) \ge l(d)$ and abcd = bc. Then ab = b and cd = c.

Proof. Since $l(bc) \ge l(d)$, abc = abcdbc = bc. So (ab)bc = b(bc). Since $l(ab) = l(b) \le l(bc)$, Lemma 1.3 implies that (ab)b = b. So ab = b. The other assertion is proved dually using Lemma 1.4. LEMMA 1.7. Let $a_1, a_2, b_1, b_2, c \in \mathscr{B}$ such that $l(c) \ge l(a_1), l(a_2), l(b_1) l(b_2)$ and $a_1ca_2 = b_1cb_2$. Then

(i) If $l(a_1) \leq l(b_1)$ and $l(b_2) \leq l(a_2)$, then $a_1b_1a_2b_2 = b_1a_2$.

(ii) If $l(a_1) \leq l(b_1)$ and $l(a_2) \leq l(b_2)$, then $a_1b_1b_2a_2 = b_1b_2$.

Proof. $a_1ca_2c = b_1cb_2c$ and so by Lemma 1.2, $a_1c = b_1c$. Similarly $ca_2 = cb_2$.

(i) By Lemmas 1.3 and 1.4, $a_1b_1 = b_1$ and $a_2b_2 = a_2$. So $a_1b_1a_2b_2 = b_1a_2$.

(ii) By Lemmas 1.3 and 1.4, $a_1b_1 = b_1$ and $b_2a_2 = b_2$. So $a_1b_1b_2a_2 = b_1b_2$.

LEMMA 1.8. Let $a_1, a_2, b_1, b_2 \in \mathscr{B}$ such that $l(b_1) \ge l(a_1)$, $l(a_2) \ge l(b_2)$ and $a_1b_1a_2b_2 = b_1a_2$. Then for $c \in \mathscr{B}$, the following are equivalent.

(1) $a_1ca_2 = b_1cb_2$, $l(c) \ge l(b_1)$ and $l(c) \ge l(a_2)$.

(2) $c = a'_1b_1da_2b'_2$ for some $a'_1, b'_2, d \in \mathscr{B}$ with $l(a_1) = l(a'_1), l(b_2) = l(b'_2), l(d) \ge l(b_1), l(d) \ge l(a_2).$

Proof. (1) \Rightarrow (2). $a_1ca_2c = b_1cb_2c$ and so $a_1c = b_1c$. Similarly $ca_2 = cb_2$. By Lemmas 1.3 and 1.4, there exist $a'_1, b'_2 \in \mathscr{B}$ such that $l(a_1) = l(a'_1), \ l(b_2) = l(b'_2)$ and $c = a'_1b_1c = ca_2b'_2$. So $c = a'_1b_1ca_2b'_1$.

(2) \Rightarrow (1). By Lemma 1.6, $a_1b_1 = b_1$ and $a_2b_2 = a_2$. By Lemma 1.2, $a_1ca_2 = a_1a_1'b_1da_2b_2'a_2 = a_1b_1da_2 = b_1da_2$. Also $b_1cb_2 = b_1a_1'b_1da_2b_2'b_2 = b_1da_2b_2 = b_1da_2$. So $a_1ca_2 = b_1cb_2$ Clearly $l(c) \ge l(b_1)$, $l(c) \ge l(a_2)$.

LEMMA 1.9. Let $a_1, a_2, b_1, b_2 \in \mathscr{B}$ such that $l(b_1) \ge l(a_1), l(b_2) \ge l(a_2)$ and $a_1b_1b_2a_2 = b_1b_2$. Then for $c \in \mathscr{B}$, the following are equivalent. (1) $a_1ca_2 = b_1cb_2$ and $l(c) \ge l(b_1), l(c) \ge l(b_2)$.

(2) $c = a'_1 b_1 db_2 a'_2$ for some $d, a'_1, a'_2 \in \mathscr{B}$ with $l(a_1) = l(a'_1), l(a_2) = l(a'_2), l(d) \ge l(b_1)$ and $l(d) \ge l(b_2)$.

Proof. (1) \Rightarrow (2). $a_1ca_2c = b_1cb_2c$ and so $a_1c = b_1c$. Similarly $ca_2 = cb_2$. By Lemmas 1.3 and 1.4, there exist a'_1 , a'_2 such that $c = a'_1b_1c = cb_2a'_2$, $l(a_1) = l(a'_1)$ and $l(a_2) = l(a'_2)$. Then $c = a'_1b_1cb_2a'_2$.

(2) \Rightarrow (1). By Lemma 1.6, $a_1b_1 = b_1$ and $b_2a_2 = b_2$. Then by Lemma 1.2, $a_1ca_2 = a_1a'_1b_1db_2a'_2a_2 = a_1b_1db_2a_2 = b_1db_2$. Also $b_1cb_2 = b_1a'_1b_1db_2a'_2b_2 = b_1db_2$. So $a_1ca_2 = b_1cb_2$. Clearly, $l(c) \ge l(b_1)$ and $l(c) \ge l(b_2)$.

2. Word equations. If Γ is a nonempty set, then let $\mathscr{F} = \mathscr{F}(\Gamma)$ denote the free semigroup on Γ . If $\Gamma = \{X_1, \dots, X_m\}$, $w = w(X_1, \dots, X_m) \in \mathscr{F}^1$ and $a_1, \dots, a_m \in \mathscr{B}$, then let $w(a_1, \dots, a_m)$ be the element of \mathscr{B} obtained by replacing X_1, \dots, X_m in w by a_1, \dots, a_m

respectively; if w = 1, then $w(a_1, \dots, a_m) = 1$. For introduction to word equations in free semigroups, see [2, 3].

DEFINITION. By a word equation in variables X_1, \dots, X_m we mean $\{w_1, w_2\}$ where $w_1 = w_1(X_1, \dots, X_m)$, $w_2 = w_2(X_1, \dots, X_m) \in$ $\mathscr{F}(X_1, \dots, X_m)^1$. It is not necessary that each X_i appears in w_1w_2 . By a solution of $\{w_1, w_2\}$ in \mathscr{B} , we mean (a_1, \dots, a_m) where $a_1, \dots, a_m \in \mathscr{B}$ and $w_1(a_1, \dots, a_m) = w_2(a_1, \dots, a_m)$. A solution (a_1, \dots, a_m) is an ordered solution if $l(a_1) \leq l(a_2) \leq \dots \leq l(a_m)$.

REMARK 2.1. In the above situation, note that the solutions of $\{w_1, w_2\}$ are exactly all the ordered solutions obtained by relabeling the X_i 's in the m! possible ways. So we will concentrate on obtaining the ordered solutions of word equations.

THEOREM 2.2. Let $m \in Z^+$, $m \ge 2$. Let $w_1, w_2 \in \mathscr{F} = \mathscr{F}(X_1, \cdots, X_m)$. Suppose $w_1 = u_1 X_m u_2$ for some $u_1, u_2 \in \mathscr{F}^-$ such that X_m does not occur in u_1, u_2, w_2 , and X_{m-1} occurs in $w_1 w_2$. Let $v_1 = u_1 w_2 u_2$. Consider the word quation $\{v_1, v_2\}$ in variables X_1, \cdots, X_{m-1} . Let (a_1, \cdots, a_{m-1}) be an ordered solution of $\{v_1, w_2\}$ in \mathscr{B} . Set $a = u_1(a_1, \cdots, a_{m-1})$, $b = w_2(a_1, \cdots, a_{m-1})$, $c = u_2(a_1, \cdots, a_{m-1})$. Let $a', c' \in \mathscr{B}$ such that l(a) = l(a') and l(c) = l(c'). If $a_m = a'bc'$, then $(a_1, \cdots, a_{m-1}, a_m)$ is an ordered solution of $\{w_1, w_2\}$. Moreover, every ordered solution of $\{w_1, w_2\}$ in \mathscr{B} is obtained in this manner.

Proof. Let (a_1, \dots, a_m) be an ordered solution of $\{w_1, w_2\}$. Let $a = u_1(a_1, \dots, a_{m-1}), b = w_2(a_1, \dots, a_{m-1}), c = u_2(a_1, \dots, a_{m-1})$. Then $aa_mc = b$. Clearly then, $abc = aaa_mcc = aa_mc = b$. So (a_1, \dots, a_{m-1}) is an ordered solution of $\{v_1, w_2\}$. New it follows from Lemma 1.5, that a_m has the prescribed form. The converse also follows from Lemma 1.5.

In what follows, if $w \in \mathscr{F}(X_1, \dots, X_m)^1$, then let $\theta(w) = \max \{i \mid X_i \text{ appears in } w\}; \ \theta(1) = 0.$

THEOREM 2.3. Let $m \in Z^+$, $m \ge 2$. Let $w_1, w_2 \in \mathscr{F} = \mathscr{F}(X_1, \cdots, X_m)$. Suppose $w_1 = u_1 X_m u_2$, $w_2 = v_1 X_m v_2$ for some $u_1, u_2, v_1, v_2 \in \mathscr{F}^{-1}$ such that X_m does not appear in $u_1 u_2 v_1 v_2$.

(i) Suppose $\theta(u_1) \leq \theta(v_1)$ and $\theta(v_2) \leq \theta(u_3)$. Let $f_1 = u_1v_1u_2v_2$ and $f_2 = v_1u_2$. Consider the word equation $\{f_1, f_2\}$ in variables X_1, \dots, X_{m-1} and let (a_1, \dots, a_{m-1}) be an ordered solution of $\{f_1, f_2\}$ in \mathscr{B} . Set $A_1 = u_1(a_1, \dots, a_{m-1})$, $A_2 = u_2(a_1, \dots, a_{m-1})$, $B_1 = v_1(a_1, \dots, a_{m-1})$ and $B_2 = v_2(a_1, \dots, a_{m-1})$. Let $A'_1, B'_2, D \in \mathscr{B}$ such that $l(A'_1) = l(A_1), l(B'_2) = l(B_2), l(D) \geq l(a_{m-1})$. Set $a_m = A'_1B_1DA_2B'_2$. Then $(a_1, \dots, a_{m-1}, a_m)$ is an ordered solution of $\{w_1, w_2\}$. Moreover, every ordered solution of

 $\{w_1, w_2\}$ in \mathcal{B} is obtained in this manner.

(ii) Suppose $\theta(u_1) \leq \theta(v_1)$ and $\theta(u_2) \leq \theta(v_2)$. Let $f_1 = u_1v_1v_2u_2$, $f_2 = v_1v_2$. Consider the word equation $\{f_1, f_2\}$ in variables X_1, \dots, X_{m-1} . Let (a_1, \dots, a_{m-1}) be an ordered solution of $\{f_1, f_2\}$ in \mathscr{B} . Set $A_1 = u_1(a_1, \dots, a_{m-1})$, $A_2 = u_2(a_1, \dots, a_{m-1})$, $B_1 = v_1(a_1, \dots, a_{m-1})$ and $B_2 = v_2(a_1, \dots, a_{m-1})$. Let $A'_1, A'_2, D \in \mathscr{B}$ such that $l(A'_1) = l(A_1), l(A'_2) = l(A_2), l(D) \geq l(a_{m-1})$. Set $a_m = A'_1B_1DB_2A'_2$. Then $(a_1, \dots, a_{m-1}, a_m)$ is an ordered solution of $\{w_1, w_2\}$. Moreover, every ordered solution of $\{w_1, w_2\}$ in \mathscr{B} is obtained in this manner.

Proof. Suppose (a_1, \dots, a_m) is an ordered solution of $\{w_1, w_2\}$ in \mathscr{B} . Let $A_1 = u_1(a_1, \dots, a_{m-1})$, $A_2 = u_2(a_1, \dots, a_{m-1})$, $B_1 = v_1(a_1, \dots, a_{m-1})$ and $B_2 = v_2(a_1, \dots, a_{m-1})$. So $A_1a_mA_2 = B_1a_mB_2$.

(i) We have $l(A_1) \leq l(B_1) \leq l(a_m)$, $l(B_2) \leq l(A_2) \leq l(a_m)$. By Lemma 1.7(i), $A_1B_1A_2B_2 = B_1A_2$. So (a_1, \dots, a_{m-1}) is an ordered solution of $\{f_1, f_2\}$. That a_m has the required form, follows from Lemma 1.8. The converse also follows from Lemma 1.8.

(ii) We have $l(A_1) \leq l(B_1) \leq l(a_m)$, $l(A_2) \leq l(B_2) \leq l(a_m)$. By Lemma 1.7(ii), $A_1B_1B_2A_2 = B_1B_2$. So (a_1, \dots, a_{m-1}) is an ordered solution of $\{f_1, f_2\}$. That a_m has the required form, follows from Lemma 1.9. The converse also follows from Lemma 1.9.

THEOREM 2.4. Let $m \in Z^+$, $m \ge 2$, $w_1, w_2 \in \mathscr{F} = \mathscr{F}(X_1, \dots, X_m)$. (i) Suppose $w_1 = u_1 X_m u_2 X_m u_3$ for some $u_1, u_2, u_3 \in \mathscr{F}^-$ such that X_m does not occur in $u_1 u_3 w_2$. Let $f_1 = u_1 X_m u_3$, $f_2 = w_2$. Then the ordered solutions of $\{w_1, w_2\}$ in \mathscr{B} are exactly the same as the ordered solutions of $\{f_1, f_2\}$.

(ii) Suppose $w_1 = u_1 X_m u_2 X_m u_3$, $w_2 = v_1 X_m v_2 X_m v_3$ for some $u_1, u_2, u_3, v_1, v_2, v_3 \in \mathscr{F}^1$ such that X_m does not occur in $u_1 u_3 v_1 v_3$. Let $f_1 = u_1 X_m u_3, f_2 = v_1 X_m v_3$. Then the ordered solutions of $\{w_1, w_2\}$ in \mathscr{B} are exactly the same as the ordered solutions of $\{f_1, f_2\}$.

(iii) Suppose $w_1 = u_1 X_m u_2 X_m u_3$, $w_2 = v_1 X_m v_2$ for some u_1, u_2, u_3 , $v_1, v_2 \in \mathscr{F}^1$ such that X_m does not occur in $u_1 u_3 v_1 v_2$. Let $f_1 = u_1 X_m u_3$, $f_2 = v_1 X_m v_2$. Then the ordered solutions of $\{w_1, w_2\}$ in \mathscr{B} are exactly the same as the ordered solutions of $\{f_1, f_2\}$.

Proof. Let $a_1, \dots, a_m \in \mathscr{B}$ such that $l(a_1) \leq \dots \leq l(a_m)$. Then in all cases $f_1(a_1, \dots, a_m) = w_1(a_1, \dots, a_m)$ and $f_2(a_1, \dots, a_m) = w_2(a_1, \dots, a_m)$.

REMARK 2.5. Let $\{w_1, w_2\}$ be a word equation in variables X_1, \dots, X_m . If w_1 or $w_2 = 1$, the solutions are obvious. So assume $w_1 \neq 1$, $w_2 \neq 1$. If m = 1, the solutions are again obvious. So let $m \geq 2$. We claim that the ordered solutions of $\{w_1, w_2\}$ can be

described in terms of ordered solutions of a certain word equation in m-1 variables. If some X_j does not appear in w_1w_2 , then $\{w_1, w_2\}$ can itself be considered as a word equation in m-1 variables and our claim holds trivially. Otherwise either $\{w_1, w_2\}$ or $\{w_2, w_1\}$ satisfies Theorems 2.2, 2.3 or 2.4 and our claim still holds. Thus given any word equation, we can completely describe all its solutions in \mathscr{B} .

EXAMPLE 2.6. Consider the word equation $\{BCBA, CABAC\}$ in variables A, B, C. There are six ways of ordering A, B, C. Finding the ordered solutions for all these equations (using the theorems of this section) and simplifying, we see that following is the list of all solutions in \mathcal{B} of the above word equation.

(1)
$$A = a$$

 $B = b$
 $C = bcba$

where $a, b, c \in \mathcal{B}$.

$$(2)$$
 $A = c'bac$
 $B = cb$
 $C = c$

where a, b, c, $c' \in \mathscr{B}$, $l(c) = l(c') \leq l(b) \leq l(a)$.

 $\begin{array}{ll} (3) & A = c'babc \\ B = b \\ C = bc \end{array} \end{array}$

where a, b, c, c' \in \mathscr{B} , $l(b) \leq l(c) = l(c') \leq l(a)$. (4) A = ac

$$egin{array}{lll} B=caba'\ C=c \end{array}$$

where $a, a', b, c \in \mathcal{B}$, $l(c) \leq l(a) = l(a') \leq l(b)$.

$$(5)$$
 $A = a$
 $B = cbca'$
 $C = ca$

where $a, a', b, c \in \mathcal{B}, l(a) = l(a') \leq l(c) \leq l(b)$.

3. Concluding remarks. Instead of starting with the semigroup of paths, we can start with semigroup of designs around the unit disc of [5] and analogously define a new idempotent, associative multiplication. Then the results of this paper remain true for that band. More generally, let E be any band with an identity element. Let Ω be its maximal semilattice image and l the corresponding homomorphism. Consider Ω with the order given by $e \leq f$ if and only if ef = f. If Ω is linearly ordered and if Lemmas 1.2, 1.3 and 1.4 are true for \mathcal{C} , then all of §2 remains true for \mathcal{C} .

References

1. A. H. Clifford and G. B. Preston, *The algebraic theory of semigroups*, vol. 1, Amer. Math. Soc., Providence, Rhode Island, 1961.

2. Ju. I. Hmelevskii, *Equations in the free semigroup*, Trudy Matem. Inst. im. Steklova, **107** (1971), 288 pp. (Russian).

3. A. Lentin, Équations dans les monoides libres, Mouton/Gauthier-Villars, 1972.

4. M. S. Putcha, Word equations of paths, J. of Algebra, (to appear).

5. ____, Word equations in some geometric semigroups, Pacific J. Math., 75 (1978), 243-266.

6. M. S. Putcha and A. H. Schoenfeld, Applications of algebraic and combinatoric techniques to a problem in geometry, J. of Pure and Applied Algebra, 7 (1976), 235-237.

Received March 21, 1977 and in revised form February 8, 1978. The first author was partially supported by Engineering Foundation, North Carolina State University, and the second author was partially supported by NSF Grant MCS 76-05784.

NORTH CAROLINA STATE UNIVERSITY RALEIGH, NC 27650

PACIFIC JOURNAL OF MATHEMATICS

EDITORS

DONALD BABBITT (Managing Editor) University of California Los Angeles, California 90024

HUGO ROSSI University of Utah

Salt Lake City, UT 84112

C. C. MOORE and ANDREW OGG University of California Berkeley, CA 94720 J. DUGUNDJI

Department of Mathematics University of Southern California Los Angeles, California 90007

R. FINN AND J. MILGRAM Stanford University Stanford, California 94305

ASSOCIATE EDITORS

E. F. BECKENBACH B. H. NEUMANN

NN F. WOLF

K. Yoshida

SUPPORTING INSTITUTIONS

UNIVERSITY OF BRITISH COLUMBIA CALIFORNIA INSTITUTE OF TECHNOLOGY UNIVERSITY OF CALIFORNIA MONTANA STATE UNIVERSITY UNIVERSITY OF NEVADA, RENO NEW MEXICO STATE UNIVERSITY OREGON STATE UNIVERSITY UNIVERSITY OF OREGON

UNIVERSITY OF SOUTHERN CALIFORNIA STANFORD UNIVERSITY UNIVERSITY OF HAWAII UNIVERSITY OF TOKYO UNIVERSITY OF UTAH WASHINGTON STATE UNIVERSITY UNIVERSITY OF WASHINGTON

Printed in Japan by International Academic Printing Co., Ltd., Tokyo, Japan

Pacific Journal of Mathematics Vol. 82, No. 1 January, 1979

Werner Bäni, Subspaces of positive definite inner product spaces of countable	1
	15
Marilyn Breen, The dimension of the kernel of a planar set	15
Kenneth Alfred Byrd, Right self-injective rings whose essential right ideals	22
	23
Patrick Cousoi and Radma Cousoi, Constructive versions of Tarski's fixed	12
Point medicins	43
lattices of algebras of fixed similarity type. I	50
Comparen Conden and Bishard A. Litherland. On a theorem of Munamusi	59
Cameron Gordon and Richard A. Litteriand, <i>On a meorem of Murasugi</i>	09
Mauricio A. Gutterrez, Concoraance and nomotopy. 1. Fundamental	75
Bishard I. Hartlay, Metabolian representations of last ensure	02
Ted Herders Internet from a frame a fr	95
Ted Huffley, Intersections of terms of polycentral series of free groups and free	105
Den Andren Isharen Computationshine hateren anderen	105
COLVER A North Construction of the second se	117
Oldrich Kowalski, <i>On unitary automorphisms of solvable Lie algebras</i>	133
Kee Yuen Lam, K O-equivalences and existence of nonsingular bilinear	145
	145
Ernest Paul Lane, <i>PM-normality and the insertion of a continuous</i>	155
Junction	155
Robert A. Messer and Alden H. Wright, <i>Embedding open 3-manifolds in</i>	162
	105
Gerald Ira Myerson, A combinatorial problem in finite fields. T	179
James Nelson, Jr. and Mohan S. Putcha, <i>Word equations in a band of</i>	100
paths	189
Baburao Govindrao Pachpatte and S. M. Singare, <i>Discrete generalized</i>	107
Gronwall inequalities in three independent variables	197
William Lindall Paschke and Norberto Salinas, C*-algebras associated with	211
	211
Bruce Reznick, Banach spaces with polynomial norms	223
David Rusin, What is the probability that two elements of a finite group	007
	231
M. Shafii-Mousavi and Zbigniew Zielezny, On hypoelliptic differential	240
operators of constant strength	249
Joseph Gail Stampfil, On selfadjoint derivation ranges	257
Robert Charles Thompson, <i>The case of equality in the matrix-valued triangle</i>	070
	279
Marie Angela Vitulli, The obstruction of the formal moduli space in the	001
negatively graded case	281