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In this paper we introduce a multiplication of paths
which yields an idempotent semigroup. We study the pro-
perties of this band and solve all word equations in this
band.

Multiplying paths in a topological space by concatenation is a
classical idea in algebraic topology. However, in Rn, identifying up
to homotopy trivializes all paths. There are many ways of obtaining
associativity with less identification. Looking only at the images of
the paths in Rn, yields an inverse semigroup (cf. [6]). Lesser
identifications lead to semigroups which locally resemble free semi-
groups [4, 5].

1. Preliminaries* Throughout this paper, Ro, R, Z+ will denote
the sets of nonnegative reals, reals and positive integers, respec-
tively. If S is a semigroup, then S1 = S if S has an identity ele-
ment; S1 = S U {1} with obvious multiplication if S does not have an
identity element. For basic notions of semigroups, see [1].

We will let ^/ denote the set of all strictly increasing continu-
ous self-maps φ of [0,1] with 0(0) = 0 and 0(1) = 1. Let n e Z+

remain fixed throughout this paper and let ^£ denote the set of all
rectifiable, continuous functions / from [0,1] into Rn such that
f(0) = 0 and / is not constant on any subinterval of [0,1]. If / 6
then let l(f) denote the length of /. lif,ge^9 then let / * g e
be defined by

, , , ί/(2aθ , 0 ^ x £ 1/2
f * Q(X) = \

J y ' (/(I) + g(2x - 1) , 1 / 2 ^ * ^ 1 .
For f,ge ^f, define / = g if g = f o φ for some φe^. Note that
if f = g, then l(f) = l(g). Intuitively, considered as a function of
time, we are interested in the way our path is traced but not the
speed. == is an equivalence relation on Λf. Let ^£ = ^/ί\=. The
operation * defined above remains well defined on ^ and (j£, *) is
a cancellative semigroup [4]. (Note that in [4], * was not used to
denote this operation.) If / 6 ^/έ, then let / denote the equivalence
class of / and define l(f) = l(f). Then l(f) is well defined. Let
fe^f. For α e(0,l], define g(a) = l(fί0,aύ where /[Otβ] denotes the
path from 0 to α (cf. [4]); g(0) = 0. By the usual arguments of
analysis, g is continuous. So for any βe(0,l(f))f there exists ae
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(0,1] such that Z(/tOfβ]) = β. Let gg = Jfι and set 1(1) = 0. It
follows from the above that for any a e &, a e [0, l(a)]t there exist
δ, ce & such that a = b * c, Iφ) = α, l(c) = l(a) — a. Also note that
for any α, b e &, l(a * b) — l(a) + l(b). Let α, 6, c, d e ^ such that
a *b — c * d, l(a) = Z(c). Then by [4], α = c and δ = d.

We now define a new operation on ^ . Let a, be ά&% First assume
l(a) <; £(δ). Let α = αx*α2, b = b^b2 where i(aO = l(a2) = £(60. Then
define aδ = ai*62. Next assume l(b) ̂  Z(α). Let a — a^a2, 6 = 6X*62

where l(a2) = Iφj = lφ2). Then define ab = ax * δ2. From now on
when we talk about ^ it is to be understood that we are talking
about & with respect to the operation just defined. Visually we
can think of the paths colliding and exactly half of the smaller path
and an equal part of the larger path destroying each other. Appli-
cations, outside of mathematics, of this and similar models will be
developed at a later date.

THEOREM 1.1. & is a band (ίdempotent semigroup) with
identity 1. For any a, be&, liab) — max. {i(α), Iφ)}. For any ae&,
&a = {b\be&9 l(a) = Iφ)} is the rectangular band component of a.
R09 with reversed order, is the maximal semilattice image of έ%
and I is the corresponding homomorphism.

Proof. First we show that & is associative. Let a, b, c e &m

We will show (ab)c = aφc). First assume l(a) <: Iφ) <; l(c). There
exist alf a2, blf b2, δ3, clf c2, c3 e & such that a = a^ α2, δ = bx * δ2 * δ3,
c = d * c2 * c3, i(αx) = l(a2) = lφ±) = Zfo), lφ2) — l{c2) and lφx * δ2) = lφ3).
Then αδ = αx * δ2 * δ3 and (αδ)c = aλ * δ2 * c3. Also δc = δx * δ2 * c3 and
aφc) = at * δ2 * c3. So a (6c) = (ab)c. Next assume i(α) <; i(c) ^ Z(δ).
There exist aίf a2, bu b2, δ3, clf c2 e & such that a — at * α2, δ = δi * δ2 * δ3,
c = d * c2, Z(αO = Z(6X) = i(α2)> ϊ(W — Kci) — Kc*) Then αδ = αx * 62 * δ3

and (ab)c = ax * δ2 * c2. Also be = 6X * δ2 * c2 and a (6c) = αr * δ2 * c2. So
(α6)c = α(δc). This takes care of the case when a has smallest length.
The case when c has smallest|length is dual. So we are left with the
case when δ has smallest length. By right-left duality, we can
assume Iφ) <; l(a) <£ l(c). There exist alf α2, α3, bu δ2, clf c2, czeέ%? such
that a = cti * α2 * α3, 6 = δx * δ2, c — cx * c2 * c3, Z(aJ = Z(α2 * α8) = Z(cx * c2)
and Z(6X) = lφ2) = Z(cx) = l(a3). Then αδ = αx * a2 * 62 and (αδ)c = a1 * c3.
Also, δc = δx * c2 * c3 and a φc) = αx * c3. So (αδ)c = α(6c) and ^ is
associative. It is clear that a2 = a for all α e ^ and so ^ is a
band. It is also clear that ϊ(αδ) = max {l(a), Iφ)} for all α, 6 6 &f.
Let 6, c G & a . Then Iφ) = l(c). There exist b19 δ2, cu c2eέ% such that
6 = δi * δ2, c = d * ̂ 2 and Z(6J = Z(δa) = l(pύ = l(c2). So δc = b1 * c2 and
δcδ = δ!*δ 2 = δ. So each ^ α is a rectangular band.

Conversely if R is any subrectangular band of B containing a
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and if δ e R, then δαδ = δ so Z(δ) = max {Z(α), Z(δ)}, and hence Iφ) ^
Z(α). Similarly αδα = a implies l(a) ̂  l(b), so Z(δ) = Z(α) and R ζ: Ba.

LEMMA 1.2. Le£ α, 6, c e ^ swcfo ίfcαί Z(δ) ^ Z(α) and Iφ) <: Z(c).
aδc = ac.

Proof. By symmetry, assume l(a) ̂  Z(c). There exist au α2, bu δ2,
cu c2, c3 e & such that a = αx * α2, δ = δ! * δ2, c = d * c2 * c3, ZίαJ =
l(βi * ca) = Z(α8) and Z(δx) = i(δ2) = ZίcJ. So δc = bx * c2 * c3 and a (αδ) =
αx * c3. Also, αc = αx * c3. So α(δc) = ac.

LEMMA 1.3. Let a,b,ce^? such that l(a) <̂  i(δ) ^ Z(c)
ac = be. Then ab = δ a n d ίfeerβ exists a' e ^ s^cfe ίfcaί ϊ(a) — Z(a')
a n d c = a'δc.

Proof. Let a = ax * a2, δ = bt * δ2 * δ3, c — cx* c2* cs w i th iCaJ =
l(a2) = Z(6,) = ZCd), i(δ2) = Z(c2) and lφ^b2) = Z(δ8). Then αc = α i * c 2 * c 3

and δc = δi * δ2 * c3. So at = b1 and δ2 = c2. Thus, αδ = αx * δ2 * δ3 =
δL * δ2 * δ3 = δ. Let α' = c1 * α2. Then Z(α) = Z(α') and α'δ — ct * δ2 * δ3.
So α'δc = cx * δ2 * cz = {?! * c2 * c3 = c.

Following is the right-left dual of Lemma 1.3.

LEMMA 1.4. Let a,b,ce& such that l(a) <; Z(δ) <; l{c) and
ca = cb. Then δα = δ and there exists a' e & such that l(a) = l{ar)
and c = cδα'.

LEMMA 1.5. Let a,b,ce& such that abc — b. Then for de&,
the following are equivalent.

( 1 ) adc = b and l{d) = Z(δ).
( 2 ) d = α'δc' for some a', c' e & with l{a) = l{a!) and l{c) = Z(c').

Proof. First note that l{a) ̂  Z(δ) and l(c) £ l{b).
(1) => (2). By Lemma 1.2, ad = aded = δd. Similarly dc = dδ.

By Lemmas 1.3 and 1.4, there exists α', c' e & such that l{a) = Z(α'),
Z(c) = Z(c') and d = arbd = dbcr. So d = α'δdδc' = α'δc'.

(2) ==> (1). Clearly Z(d) = Z(δ). By Lemma 1.2, adc = aafbcfc =
abc = δ.

LEMMA 1.6. Lei α , δ , c , ί ί e ^ such that l(b) :> ί(α), l(c) ̂  Z(d)
and aδcd = be. Then ab — b and cd — c.

Proof. Since Iφe) ̂  l(d), abc = aδcdδc = δc. So (aδ)δc = δ(δc).
Since l{ab) = Z(δ) ̂  Z(δc), Lemma 1.3 implies that (αδ)δ = δ. So αδ = δ.
The other assertion is proved dually using Lemma 1.4.
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L E M M A 1.7. Let au a2, bu b2, ce& such that l(c) ^ l(aλ)9 l(a2),

Iφi) Iφύ and α i c α 2 = bxcb2. Then

( i ) / / l(ax) ^ Z(δL) and l(b2) <> l(a2), then a^ajb^ = bxa2.

( i i ) If l(ax) ^ Iφi) and l(a2) <> l(b2), then aJ>J)2a2 = bj)2.

Proof. axca2c = δxcδ2c and so by Lemma 1.2, αLc = bxc. Similarly

ca2 — cb2.

( i ) By Lemmas 1.3 and 1.4, a1bι = δx and a2b2 = α2. So axbxa2b2 =

&ia2.

( i i ) By Lemmas 1.3 and 1.4, α ^ = &! and 62α2 = δ2. So aJ>J)2a2 =

bj)2.

LEMMA 1.8. Let alf a2, bu b 2 e ^ such that l(bt) ^ l ( β ^ 9 l(a2) ^ l (b 2 )

and ajbxa2b2 = bλa2. Then for c e g@, the following are equivalent.

( 1 ) axca2 — bλcb2i l(c) Ξ> Z(6X) and l(c) ^ l(a2).

( 2 ) c = αjδiώαgδe /or some αj, 62, ώ 6 ^ wΐίfc ^ α j = ϊ(αί), lφ2) =

Proof. (1) => (2). αiCα2c = bxcb2c and so α ^ = b±c. Similarly

ca2 = cδ2. By Lemmas 1.3 and 1.4, t h e r e exist a[, b2e& such t h a t

l(βλ) = ί(αί), Z(62) — ί(&0 and c = a'J)^ = cα2δ2. So c = ai6iCa26i.

(2) => (1). By Lemma 1.6, α ^ = δj, and α262 = a2. By Lemma 1.2,

axca2 — aιa'J)ιda2b[a2 — a1b1da2 = b±da2. A l so δ^δa = b1a
ti)1da2b

t

1b2 — bxda2b2 =

6iCία2. So α tcα2 = 6 ^ 2 Clearly Z(c) ^ i(δi), l(c) ^ ϊ(α8).

LEMMA 1.9. Let alf a2, blf b2e & such that l(bj ^ Z(aO, i(δ2) ^

ί(a2) a^ώ a1δ1δ2a2 = δiδa. jΓΛett / o r c e &, the following are equivalent.

( 1 ) axca2 = δxcδ2 aweί Z(c) ^ Z(δO, Z(c) ^ Z(δ2).

( 2 ) c — aΊbjdb&i for some d, a[, a'2e & with Ifa) = l(μ[)9 l(a2) =

^ lib,) and

Proof. (1) ==> (2). a2ca2c = δiCδ2c and so axc = δ ^ . Similarly

cα2 = cδ2. By Lemmas 1.3 and 1.4, t h e r e exist a[, α2 such t h a t

G — αίδLc = cδ2α2, Ifa) = Z(αί) and Z(α2) = Z(αί). Then c = αίδ!cδ2α2.

(2) => (1). By Lemma 1.6, aA = δx and δ2α2 = δ2. Then by

L e m m a 1.2, axca2 — a1a
ti)1db2a\a2 — a1b1db2a2 — bxdb2. Also δiCδ2 =

= bxdb2. So αxcα2 = δiCδ2. Clearly, l(c) ^ Z(6i) and l(c) ^

» W o r d equations* If Γ is a nonempty set, then let

denote the free semigroup on Γ. If Γ — {X^ ••-, Xm}, w =

, X J 6 ̂ ' 1 and α l f , am e ^ , then let ^ ( a u , a J be t h e

element of & obtained by replacing Xlf , Xm in w by aίf , αTO
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respectively; if w = 1, then w(au •••, am) = 1. For introduction to
word equations in free semigroups, see [2, 3].

DEFINITION. By a word equation in variables Xu , Xm we
mean {wlf w2} where wγ = w ^ , , X J , w2 = w ^ , , X J e
•^"(Xi, , XJ 1 . It is not necessary that each Xt appears in wtw2. By
a solution of {wlf w2) in <5§, we mean (α^ , am) where alf , am e &
and w1(au , αm) = w2(alf , αm). A solution (αL, , αm) is an
ordered solution if Z(αJ ^ Z(α2) ^ ^ Ϊ ( O

REMARK 2.1. In the above situation, note that the solutions of
{wlf w2) are exactly all the ordered solutions obtained by relabeling
the X/s in the m! possible ways. So we will concentrate on obtaining
the ordered solutions of word equations.

THEOREM 2.2. Let m e Z+, m ^ 2. Let wlfw2 e ^ ~ = ̂ (X19 ,XJ .
Suppose wλ = ^X w u 2 /or some w^ ^ 2 G ̂ " X Ŝ -CΛ ίΛαί Xm does %oί
occt^r w wx, t62, w21 and Xm-X occurs in wxw2. Let vt = uxw2u2.
Consider the word quation {vu v2) in variables Xlf •• ,Xm_1. Let
(au , αm_i) 6β an ordered solution of {vu w2} in &. Set a —
ux{au , αm_J, b = w2(alf , αm_i), c = u2(au , α ^ ) . Lei α', c' 6 ^
s^cfe ίfeαί Z(α) = l(μ') and l(c) = l(cf). If am = α'δc', then (alf •••,

ΛW_I, α w ) is an ordered solution of {wu w2}. Moreover, every ordered

solution of {wu w2) in g@ is obtained in this manner.

Proof. Let (al9 * ,α m ) be an ordered solution of {wu w2}. Let
a = u,(au , αm_j), b = w2(αx, , αm_x), c = u2(a19 , αm_J. Then
ααmc = b. Clearly then, abc = aaamcc = aamc = 6. So (αly , αm_x)
is an ordered solution of {vlf w2). New it follows from Lemma 1.5,
that am has the prescribed form. The converse also follows from
Lemma 1.5.

In what follows, if w e ^(Xίf , XJ 1 , then let θ(w) =
max{i |Xί appears in w}; 0(1) = 0.

THEOREM 2.3. Lei m e ^ + , m ^ 2 , Lei wx, wa 6 Jr= ^(Xlf ,XJ .
Suppose w1 — UyXnVti, w2 = ^iX^g /or some wx, w2, v^ v2 € ^ " x sw.cΛ
i/tαi Xm does wo£ appear in uxu2v{ΰ2.

( i ) Suppose θ(uύ ^ 0(1;^ α^d 0(v2) ^ θ(u9). Let fγ = u ^ i ^ t g and
ft — vfa. Consider the word equation {f19 f2} in variables Xi, , Xm-ι
and let (alf , αm_x) be an ordered solution of {flf f2} in &. Set
A, = ux{au , αm_i), Λ = u2(al9 , αw_i), J5X = vx{a19

B2 = v,(αlf , aw_x). Lei Aί, Bf

2fDe^ such that l(A[) =
Z(D) ^ Zίa.-.J. Sei am = Aί^JDA^. Γfee^ (a l f , aw- l f a j is

ordered solution of {w19 w2}. Moreover, every ordered solution of
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{wlf w2) in & is obtained in this manner,
(ii) Suppose θ{u^) <; θ(vύ and θ(u2) ^ θ(v2). Let fx — uγvxv2u29

f2 = VyV2. Consider the word equation {f19 f2) in variables Xl9 , Xm-X.
Let (a19 , αm_χ) be an ordered solution of {fu f2} in £%. Set Aλ =
ux(au , αw_0, A2 = u2(al9 , am_x), A = v^{a19 , αm_0 αweZ £ 2 =
^2(α1? , αm_i). I/βί A[, A2f De^ such that 1{A[) = ί(Aχ), Z(A£) = Z(A2),
1{D) ̂  Z(αm_i). Sfe£ αm = A!ιBιDB2A[. Then (alf , am__u am) is an
ordered solution of {wίf w2). Moreover, every ordered solution of
{wί9 w2) in & is obtained in this manner.

Proof. Suppose (alf , an) is an ordered solution of {wl7 w2) in
&. Let Ax = Uifβu , αw_ t), A2 = u2{alf- , αm_i), A = Φ i , ' , αm_x)
and B2 = ^(α^ , α ^ ) . So AxamA2 = BxamB2.

( i ) We have Z(Λ) ^ Z(B,) ̂  Z(αJ, ί(52) ^ ί(A2) ^ ϊ (αJ . By
Lemma 1.7(i), AXBXA2B2 = J S ^ . So (αly •••, αTO_i) is an ordered solu-
tion of {/i,/2}. That am has the required form, follows from Lemma
1.8. The converse also follows from Lemma 1.8.

(ii) We have l(AJ ^Ifo) £l(am)f 1{A2) ̂  l(βt) S HflJ. By
Lemma 1.7(ii), AJ5γB2A2 = BJB2. So (alf •••, am_^) is an ordered solu-
tion of {f19 f2}. That am has the required form, follows from Lemma
1.9. The converse also follows from Lemma 1.9.

THEOREM 2.4. Let meZ+, m^2, wlf w2e^~ =
( i ) Suppose wx = uxXmu2Xmuz for some ulf u2, uz

Xm does not occur in uxuzw2. Letfλ — uxXmuz, f2 = w2. Then the ordered
solutions of {wu w2} in & are exactly the same as the ordered solu-
tions of {fuf2}.

(ii) Suppose wx = uιXmu%XfΛv^f w2 = v^^ViX^v^ for some
ulf u2, u3, v19 v29 vz e J?"1 such that Xm does not occur in uγuzv{ΰz. Let
/i = uxXmuZ9 f2 = ViXmVι. Then the ordered solutions of {wu w2) in
& are exactly the same as the ordered solutions of {fuf2}.

(iii) Suppose wx — uJί^u^X^u^ w2 — vjίmv2 for some u19 u29 uZ9

vl9 v2 6 ^'1 such that Xm does not occur in UJUJO&I. Let ft — ujί^u^
f2 = vλXmv2. Then the ordered solutions of {wlf w2) in & are exactly
the same as the ordered solutions of {fl9 f2).

Proof. Let aί9 , am e & such that Z(aJ ^ ^ Z(<O Then
in all cases fγ(al9 , α j = wγ{al9 , aj and /2(αx, , am) =
w2(a19 •••, α j .

REMARK 2.5. Let {wt9 w2} be a word equation in variables
Xl9 •••, Xm. If w1 or wz — 1, the solutions are obvious. So assume
w1 Φ 1, w2 Φ 1. If m = 1, the solutions are again obvious. So let
m ^ 2. We claim that the ordered solutions of {wί9 w2} can be
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described in terms of ordered solutions of a certain word equation
in m - 1 variables. If some Xs does not appear in wιw29 then {wlf w2}
can itself be considered as a word equation in m - 1 variables and
our claim holds trivially. Otherwise either {wlf w2} or {w2, wj
satisfies Theorems 2.2, 2.3 or 2.4 and our claim still holds. Thus
given any word equation, we can completely describe all its solutions
in &.

EXAMPLE 2.6. Consider the word equation {BCBA, CABAC} in
variables A, B, C. There are six ways of ordering A, B, C. Finding
the ordered solutions for all these equations (using the theorems of
this section) and simplifying, we see that following is the list of all
solutions in <2$ of the above word equation.

(1)

where a,b, ce &.

(2)

where a, δ, c, cf e &, l(c) == l(c') ^ l(b) <: l(a).

( 3 )

C = bc

where α, δ, c, c' e &, Iφ) ^ ί(c) = l(c') ^ Z(α).

( 4 ) A — ac

B — cabar

where α, α', i , c e ^ , Z(c) ̂  Z(α) = i(α') ̂  Z(δ).

( 5 ) A = α

.B = cδcα'

C = cα

where α, α', δ, c e ^ , ί(α) = l(a') ^ Z(c) ̂  Iφ).

3. Concluding remarks. Instead of starting with the semi-
group of paths, we can start with semigroup of designs around the

A =
B =

C =

A--

B

C -

0 ^

A =

-• a

-b

bcba ,

— e'bac

= cb

= c

iφ) s

• c'babc
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unit disc of [5] and analogously define a new idempotent, associative
multiplication. Then the results of this paper remain true for that
band. More generally, let E be any band with an identity element.
Let Ω be its maximal semilattice image and I the corresponding
homomorphism. Consider Ω with the order given by e ^ / if and
only if ef — f. If Ω is linearly ordered and if Lemmas 1.2, 1.3 and
1.4 are true for g7, then all of §2 remains true for g\
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