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For Banach spaces X having the unit cell of X**w*-
sequentially compact, the compact operators from X into a
Banach space Y attain their norm in X**. The same holds
for weakly compact operators if, in addition, X has the
strict Dunford-Pettis property. For Banach spaces X such
that the quotient space X**/X is separable and Y the space
of absolutely summable sequences, a proper subset Pσ of
the finite rank operators from X into Y is exhibited. The
set Po is shown to consist of operators which attain their
norm and to be norm-dense in the operator space.

Throughout, X and Y will be Banach spaces and £f(X, Y) the
space of bounded linear operators from X into Y. An operator
Te£?(X, Y) attains its norm on the unit cell SΣ** of X** if | |Γ | | =
| | J Γ * * # * * | | for some cc**eX** of norm one. For general results on
norm attaining operators and their density in £f{X9 Y), see [2].
A space X is said to have the strict Dunford-Pettis property [4 p.
137] if for all Banach spaces Y an arbitrary weakly compact operator
Tej*f(X, Y) maps weakly Cauchy sequences to strongly Cauchy
sequences.

THEOREM 1. Let X be a Banach space with Sx** sequentially
compact in the tf(X**, X*) topology. Then

( i ) if Tejzf{X, Y) is compact, T attains its norm on Sx**.
Thus, every compact operator with reflexive domain X attains its
norm on Sx.

(ii) if Te J^{X, Y) is weakly compact and X has the strict
Dunford-Pettis property, T attains its norm on Sx**. In addition,
therefore, if Y is reflexive, all operators attain their norms on
Sχ**

Proof. There is a sequence {xn} in Sx satisfying || !Γ| |<| | Txn\\-\-
IIn. Let Jx be the canonical embedding of X into X**. Since
{JxxJ £ Sx** there exists a subsequence {xnj} and an #**eSx** such

that JΛxnj.-l*x** in the tf(X**, X*)-topology. The sequence {xnj} is
weakly Cauchy in X, whence under either hypothesis there exists
a subsequence \wό} of {xnj} such that {Tw5} is norm-convergent to
some yeY. Since {JxWj} is σ(X**, X*)-convergent to #** and {Twό}
is weakly convergent to y, we have ϊ7**^** = Jyyt Thus,
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\\Twά\\-*\\y\\ = | | T * * # * * | | , whence | | Γ | | - | |Γ**α>**||. Δ

A consequence of [9, Theorem 3] is that if Sx is an RNP set
and δ>0 every Te^f(X, Y) may be written as T = 2\ + T2,
where T2 attains its norm on Sx and Tx is rank one (thus attaining
its norm on Sx**) with | |TΊ | | <δ. A similar weaker result comes
from [5] (proof of Theorem 1 and Remark p. 142) and Theorem 1.

COROLLARY. If X is a Banach space with Sx**σ(X**, X*)-
sequentially compact and δ > 0, every Te*£f(X, Y) may be written
as T = Z\ + T2, where both attain their norm on Sx** and Tx is
compact with || 2\ || < δ.

Let Y be a weakly sequentially complete space and X = c the
Banach space of convergent sequences. Every Te^f(X, Y) is
compact [3, p. 515], and since X* is separable, part (i) of the
theorem gives that every operator attains its norm on Sx**. More-
over, the same can occur under the hypotheses of part (ii). Such
cases render the central result Theorem 1 of [5] trivial, making it
desirable to find useful subsets of norm attaining operators which
are dense in the operator space. Such is the purpose of the
remainder of this note for the case of Banach spaces X having
X**/JXX separable and Y = k, the space of absolutely summable
sequences. For such spaces X, £f(X, k) consists entirely of compact
operators [6, Theorem 5].

LEMMA. If X is a Banach space for which X**/JXX is separa-
ble, then Sx** is <J(X**, X^-sequentially compact.

Proof. Let {x%*} Q Sx**. Since the σ(X**, X*)-sequential closure
of XisX** [6], for each positive integer n there exists a sequence

{α?n<}Γ=i in Sx such that Jm%*i^*xl* in the σ(X**, X*) topology. Let
Z be the closed linear span of the set {xnι) and apply the lemma
in §1 of [6] to deduce that Z**, whence Z*, is separable. This
gives Sz** to be σ(Z**, Z*)-sequentially compact. The remainder
of the proof is straight forward using the Hahn-Banach theorem.

Let X* ®^ Y denote the tensor product of X* and Y equipped
with the least crossnorm λ [8]. The assignment (Σfi(g)yt)(x) =
Σfi(x)Vi defines an isometric isomorphism of X*®^Γonto the subspace
of compact operators in £f(X, Y) of finite rank. In the following
we let {ej be the usual unit vector basis of lx and put
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where n is arbitrary and ft attains its norm on Sx. Pσ(X, k) is
not equivalent to the tensor product of two norm dense subsets.

THEOREM 2. // X**/JXX is separable, PO(X, k) is norm dense
in

Proof. Let X**/JXX be separable, ε > 0 be given, and Te
, k). Since every operator in Jtf(X, lt) is compact and lx has

the approximation property [7, p. 115], we have £f(X9 li)=X* ®χllf

where (g) denotes the closure in <£f(X, lt) of X* ®^ lx. Thus, there
exists Tx 6 X* ®λ lx such that \\T - Tx\\ < ε/3, where 2\ = Σϊ=i ®.*®
ys for appropriate x f e Γ and ys = (fls, £2β, ) e J1# Hence, Txx =

Σϊ«i».*(»)». = (IΣΪ-ifiA*](»), [ Σ . * = I £ . A Ί ( * ) , •••)-
The series ΣΓ=i 11 Σί=i f y.̂ ? 11 converges: if η > 0 and m, w are

positive integers, n > m, there exists N > 0 such that n,m>N
imply Σ?=»+i Ify.l < ^/^ll^ll* f ° r β = l, 2, •••,&, because for each
β Σ/U I f i. I converges. Thus, Σ?=«+i 11 Σ?=i f yΛ* 11 ^ Σ?=i 11«? 11 Σy=«+i
l fy.l<7-

For each j = 1, 2, •••, there exists a norm attaining /,-eX*
such that | |Λ-ΣΪ-ifyΛ*| |<e/S i + 1 [l], whence the series ΣΓ-ill/yll
converges since 11/,.|| < ε|3 i+1 + || Σϊ-ify.».*ll We define Γ2x = (/;(&),
Λ(ίc)> •••)• Since T2 is clearly a bounded linear operator from X
intoΛ, we note || T2x - Γ^| | ^ Σ?=i ll/y - Σί=ifyΛ*ll 11*11 < e||*ll/3,
whence || Γ2 - Tx | | < ε/3. Since there exists iSΓ > 0 such that

6/8, we have || T - Σf- iΛ® βyll ^ II Γ - ΓJI + || T, -
ΣUfi ®βyll < 2ε/3
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