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In 1971, R. M. Stephenson, Jr., [4], showed that an abelian
locally compact topological group must be compact if it is
minimal (i.e., if it does not admit a strictly coarser Hausdorff
group topology). He left open the question, whether there
exist locally compact noncompact minimal topological groups.

In this note we give an example of a closed noncompact
subgroup of GL (2; R) which is minimal. Moreover we prove
that every discrete topological group is topologically iso-
morphic to a subgroup of a locally compact minimal topo-
logical group. Another example shows that a minimal
topological group can contain a discrete, nonminimal normal
subgroup.

Let (X, X) be a topological group. Then Ue(X, X) denotes the
filter of all ^-neighborhoods of the neutral element eeX. If GcX
is a subgroup, let X\G denote the relative topology induced by X
on G, and let X/G denote the quotient topology on the left coset
space X/G.

In the sequel we will need the following technical result.

LEMMA 1. Let X be group and GaX be a subgroup. Let @, X
be group topologies on X such that @ c X, @ | G = X \ G, and &/G =
X/G. Then @ = X. .

Proof. Let UeUe(X, X). Then there is 7ett e (J,@) such that
(V-'V) n G c U. Because of UΓi FeUe(X, £), there exists We Ue(X, @),
WaV, such that Wa(UΓιV)G.

Let we W; then there are xe UΠ V and yeG satisfying w = xy
whence y = x^we ((U f] V)~ιW) Π fie {V~ιV) Π Gc U. Thus w =
xy e (U Π V)Ua U\ This proves Wcz U\ hence U2e Ue(X, @).

Given a group X, let Aut X denote the group of all automorphisms

Let G, H be groups and let σ: H-> AutG be a homomorphism;
by G Xσ H we denote the corresponding semi-direct product, i.e.,
the set GxH provided with the group structure (cc, y) (x\ yf)\ =
(x-σiyWlyy') {x,x'eG, y,y'e H) (cf. [1; Ch. Ill, §2, Prop. 27]).

In this situation we will often identify G with the normal
subgroup G x {e}dGXσH as well as H with the subgroup
{e} x H.
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Let @ and Z be group topologies on G and H, respectively; then
the product topology @ x % is a group topology on GχσH if and
only if the map

(G, @) x (if, £) > (G, @) , (x, ?/) i > (J(τ/)(x) ,

is continuous (cf. [1; Ch. Ill, §2, Prop. 28]). If @ x X is a group
topology on GχσH, we will call the topological group (G Xσ H, @x £)
the topological semi-direct product of the topological groups (G, @)
and (JS, 3;), and use the notation (G, @) XJop (if, 2).

(*)

Moreover, if 3 is any group topology on G Xa H, then the

map (G, 31G) x (J3, 31H) -> (G, 31G), (x, y) h- σ{y){x), is con-

tinuous (see the passage after Prop. 28 in [1; Ch. Ill, §2]).

In the following examples topological semi-direct products and
(*) will be the main tools.

DEFINITION. A Hausdorff topological group (X, %) is called min-
imal, if there does not exist a Hausdorff group topology 6 on I
which is strictly coarser than %.

REMARK. Let (X, X) be a locally compact topological group, which
admits a separating family (Pi)iei of continuous irreducible unitary
finite-dimensional representations. If (X, X) is minimal, then (X, X)
is compact. In fact, let © denote the initial topology on X with
respect to the representations pt (iel). Then @ c X; moreover (X, @)
is a Hausdorff precompact topological group. (X, S) being minimal,
one obtains S£ = @, whence (X, 2) is a precompact and complete
topological group hence compact (cf. also [4]). It is clear that the
above statement remains true, if we only assume (X, X) to be complete
in its two-sided uniformity instead of being locally compact.

EXAMPLE 1. Let X be the group of all matrices (Q i ) in the
general linear group GL (2; R) such that a e R+: = {ceR:c > 0} and
beR. Then X provided with its usual locally compact, noncompact
group topology £, induced by R\ is a minimal topological group.

Proof. It is well-known that (X, Z) may be identified with the
topological semi-direct product R Xlop R+ with respect to the homo-
morphism σ: R+-> Aut R, σ(y) (x): —xy{ye R+, x e R), where the groups
R = (R, +) and R+ = (JB+, •) are given their standard topologies.
In fact, the map
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is a topological isomorphism. G: = R x {1} is a normal subgroup of
X, which we will write additively, H: — {0} x R+ is a nonnormal
subgroup of X, which we will write multiplicatively.

Let @ be a Hausdorff group topology on X such that S c l We
have to prove that @ = X.

(a) We first show that &\G = Z\G.
Because of (*) and because of Z ID @, we obtain that the map

w: (G, @ IG) x R+ -+ (G, @ | G), ((&, 1), ?/) ι-+ (&]/, 1), is continuous. @ being
Hausdorff, there exists UeU0(G, @|G) such thatίJ — U Φ G. Choose
F G HO(G, @|G) and ε > 0 satisfying w(F x [1 - s, 1 + e]) c U. Hence
U(χ,DβF [~^, ^ ] x {1} = U(*,i)eF (α; [1 - ε, 1 + e] - a?) x {1} c w(F x
[1 — ε, 1 + ε]) — w(V x {1}) aU — U Φ G; consequently there is M > 0
such that Fc[-Λf, M] x {1}. Thus F is contained in a compact
subset of (G, £|G), hence Z\V = Θ|F, which implies £ |G = @|G.

(b) Next we show that @/G - Z/G.
Because of (a), (G, @|G) is a complete subgroup of the Hausdorff

topological group (X, @), whence G is closed in (X, @). Consequently
@/G is a Hausdorff group topology on the factor group X/G. Let
q:X~^XIG denote the quotient map.

Because of (a) there exists UeVLe(X, @) such that J7Γ)G = [-1, l]x
{1}; choose VeUe(X, @) such that V =V~ι and F3cC7. There exists
εe]0, 1[ satisfying [-ε, ε] x {1} c V. If (x,y)eV, then (ey, 1) =
(a;, 2/) (ε, l) (cc, y)"1^ Vsf]G(Z Uf]G, whence y<£l/ε. Fbeing symmetric,
we obtain that ^(F)cg(i? x [ε, 1/ε]) = q({0} x [ε, 1/ε]). Thus q(V) is
contained in a compact subset of (X/G,%/G), hence (@/G)|g(F) =
(Z/G)\q(V), which implies ©/G = S/G.

Now, from (a) and (b) we obtain @ = ίE by Lemma 1.

Example 1 shows that a minimal locally compact topological
group may have nonminimal normal subgroups and nonminimal factor
groups, since clearly R and R+ are nonminimal topological groups.

REMARK. We mention without proof that for all neN, the
groups GL(n; K) (Ke{R, C}) are not minimal.

EXAMPLE 2. Let K be a compact topological group, and let H
be a discrete topological group. Let G: = KH be endowed with the
product topology.

σ:H >AutG , σ(k)((xh)heH): = (xhk)heH (keH, (xh)heHeG)

is a homomorphism. Moreover, the map
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w: G x H > G , ((xh)heH, k) t — > (xhk)h*H >

is continuous, as can easily be verified.
Thus the topological semi-direct product (X, Z): = G Xlop H is a

well-defined locally compact topological group.
From now on we assume that KΦ{e). We prove that (X, Z)

is a minimal topological group.
Let S be a Hausdorff group topology on Xsuch that © c £ . We

have to show that © = Z.
(a) (G, £|G) being compact, we have @\G = Z\G.
(b) We show that &\H=Z\H.
K being nontrivial and Hausdorff, there exists UeUe(K) such

that U Φ K. Because of (*) and (a), the map

w: (G, Z\G)x (H, &\H) > (G, Z\G), ((&*)*«*, k)\ >{xhk)h,H ,

is continuous. Thus there exist V e Ue(H, © | H) and a finite subset
EdH such that the following implication holds:

(xh)kBH eG,xh = e for all heE

Now we easily deduce that k e E for all ke V. Thus V is finite,
whence — @|£Γ being Hausdorff — @|if equals the discrete topology
on H.

(c) Next we obtain that &/H = 2/iί.
In fact, © | ϋ being discrete, i ϊ is a closed subgroup of (X,©).

Consequently, ©/if is Hausdorff and coarser than the compact topology
Z/H (mind that (G, £|G) and (X/H, Z/H) are homeomorphic).

Now, from (b) and (c) we obtain © = Z by Lemma 1.

Specializing for instance K: = Z/2Z in the above Example 2, we
obtain:

PROPOSITION 1. For every group H there exists a locally compact
minimal topological group (X, Z) containing H as a subgroup such
that Z\H equals the discrete topology. Moreover, X can be chosen
such that card X ^ 2cardff.

The following example shows that minimal topological groups
can even contain discrete nonminimal normal subgroups.

EXAMPLE 3. Let peZ be a prime number, K: = Z\pZy and let
X be an infinite-dimensional vector space over K. Let X be provided
with its discrete topology. X being algebraically isomorphic to ϋΓ(7): =
{{xι)i&IeKI: {ie J: ^ Φ 0} is finite} for some index set 7, it is clear
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that X is not a minimal topological group (consider the relative
product topology on K{1)). Moreover, every subgroup of (X, -f) is
a linear subspace of the ET-vector space X, and for every finite
subset EaX the subgroup (E) generated by E is finite.

The group Z(X) of all bisections f:X-+X provided with the
topology of pointwise convergence, is a topological group which is
complete in its two-sided uniformity according to [2; §3, Ex. 19].
Cf. also [3]. — Clearly, AutX is a closed subgroup of Z(X). Thus
AutX provided with the relative topology induced by Z(X) is a
Hausdorff topological group, which is complete in its two-sided uni-
formity. Moreover, AutX is metrizable and separable if X is
countable.

We mention that AutX does not have a group completion. In
fact, let (e,),ej be a basis of the K-vector space X, and let Z{I)
denote the group of all bijections τ: I -»I provided with the topology
of pointwise convergence. On account of [2; §3, Ex. 19], Z(I) does
not have a group completion. The map

j: Z(I) > Aut X, i (r)(Σ «A Y = Σ <*&«> (? e Z(I), (at)teI e K<») ,
Vie/ / iel

being a topological isomorphism of Z(I) onto a subgroup of Aut-XT,
also Aut X does not have a group completion (hence Aut X is not
locally compact).

Obviously, the map

w:Xx AutX >-X",(α?f/)ι >fix) ,

is continuous; thus the topological semi-direct product (Y,£): =
X X\°d

p Aut X is a well-defined Hausdorff topological group without
a group completion, which is metrizable and separable if X is coun-
table. We show that (Y, X) is a minimal topological group.

Let @ c £ be a HausdorfF group topology on Y.
(a) We first show that &\Σ=Z\X.
There exists UeU0(X, &\X) such that X\U is infinite. Because

of (*) and because of Ϊ D @ , the map

w:(X,&\X) x (Aut-X, £|AutX) > (X, @|X), (α?, /) 1 >/(a?) ,

is continuous. Thus there exist Feϊto(X, @|X) and a finite subset
EaX such that the following implication holds:

feAutX,f(y) = y for all yeE

(E) being finite, there exists y e X\((E) UU). — For every z e X\(E)
we can construct / e Aut X such that f(z) = 2/ and /(a?) = as for all
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xe (E); because of f(z) = yί U we obtain that z$ V. This implies
7 c ( J 5 ) , whence V is finite. Consequently, @|X equals the discrete
topology.

(b) Next we show that @ | Aut X = X | Aut X.

w\{X,@\X) x (AutX, @|AutX) >(X, @|X)

being continuous, we obtain—using (a)—that for every xeX the
set {/ 6 Aut X: f (x)=x) belongs to Uίd (Aut X, @ | Aut X), whence clear-
ly tt^(AutX, £|AutX)cXt,d(AutX, @|AutX). This proves %\AutXc
@|AutX.

(c) Finally we show that @/Aut X = £/Aut X (which together
with (b) implies @ = X by Lemma 1).

Because of (b) and the fact that (Aut X, X | Aut X) is complete
in its two-sided uniformity, AutX is a closed subgroup of the
Hausdorff topological group (Y, @), as can easily be verified. Conse-
quently, (Γ/Aut X, @/Aut X) is Hausdorff.

Let (?: F-+Y/Aut X denote the quotient map. There exists Ue
U.(Γ, @) such that (YJAutX)\q(U) is infinite. Let VeUe(Y, @) such
that V2 c U. Then there is a finite subset EaX such that (0, f)eV
for all / e Aut X satisfying /(a) = x (x e E). Fix y e X\(E) such that
q{y,id)ϊq{U).

Let 2 e X\(E) and let # 6 Aut X. Then there exists / e Aut X
such that f(z) = y and f(x) = x for all xe(E). Thus ( 0 , / ) G F .

Because of g((0, /)•(£, 0)) = q(y, fg) = g(i/, id) ί g(l7) we obtain (2, g) £
V.—Consequently Vcz(E) x AutX, whence q(V)c:q((E) x {id}) is
finite. (57Aut X, @/Aut X) being a Hausdorff topological homogeneous
space, we obtain that @/Aut X is discrete, whence @/Aut X = ίE/Aut X.

proof. From the construction of Example 2 it is clear
that H is topologically isomorphic to the factor group X/G. Thus
we obtain the following.

PROPOSITION 1'. For every group H there exists a locally com-
pact minimal topological group (X, %) containing a normal subgroup
N such that XjN = H and such that X/N equals the discrete topo-
logy on H.
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