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This paper extends a decomposition process of [Richard
Arens, Operational calculus of linear relations, Pacific J.
Math., 11 (1961), 9-23] for closed linear relations, T, on a
Hilbert space to the setting in which T is a linear function
from a dense linear subspace of a separable normed linear
complete space Si to an innear product space S2. This
decomposition is used in showing that such a function
contracted to a suitable dense linear subspace of its initial
set is the contraction of a closed linear function from a
dense linear subspace of Si to S2. In particular, in case
the initial set of T is Sl9 it is shown that the contraction
of T to a suitable dense linear subspace of Si is the contrac-
tion of a continuous linear function from Si to S2.

It will be supposed in the following that (Sl9 N±) is a normed
complex linear complete space, that (S2, Q2) is a complex complete
inner product space with N2 the norm for S2 corresponding to Q2,
and that T is a linear function from the iVΊ-dense linear subspace
S of Sx to S2.

DEFINITION. The set of all points x of Sx such that there is a
sequence z having iVΊ-limit x such that T[z] has iVa-limit 0 will be
denoted by Z\T) and the set of all points x of S2 such that there
is a sequence z having JVrlimit 0 such that T[z] has i\Γ2-limit x will
be denoted by Z"(T). Moreover, P"(T) will denote the Q2-orthogonal
projection of S2 onto the closed linear space Z"(T). The statement
that T is graph-dense means that T is dense in the subspace S x
T(S) of the normed linear space Sx x S2.

Note 1. One notes that Z"(T) is {0} only in case T is the
contraction to S of a closed linear function from a dense linear
subspace of Si to S2. Moreover, in case T(S) lies in Z"(T), T is
graph-dense. Indeed, suppose T(β) lies in Z"(T) and {x, y) is in
S x Γ(S). Since y — Tx is in Z"(T), there is a sequence z having
iVj-limit 0 such that T[z] has iV2-limit y — Tx. Hence, x is the
JVrlimit of x + z and y the iVa-limit of T[x + z].

Note 2. We note the following properties of Z\T) and Z'\T).
( i ) T(Sf)Z'(T)) lies in Z"{T).
( i i ) T-\Z'\T)) lies in Z\T).
(iii) In case B is a continuous linear function from Sλ to S2,
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Z"(B + T) is Z'\T).
(iv) In case B is a continuous linear function from S2 to St,

Z\T) lies in Z\BT) and the closure of B{Z"(T)) lies in Z"{BT).
(v) In case B is reversibly continuous from Sι onto Sίf Z"{TB)

is Z"(T) and Z'(TB) is B~\Z'{T)).
We shall establish (iv). Suppose x is in Z'(Γ) and 2 is a

sequence having JVrlimit x such that T[z] has iV2-limit 0. Then
BT[z] has JV -limit 0. Hence, x is in Z\BT).

Suppose y is in Z"(T) and 2 is a sequence having JVΊ-limit 0
such that T[z] has iV2-limit y. Then i?Γ|X] has iV2-limit By; hence,
By is in Z"{BT). Since Z"(BΓ) is closed and includes B(Z"{T))f

the closure of B{Z"(T)) lies in Z"(BT).

THEOREM 1. The linear function (1 — P"(T))T is the contraction
to S of a closed linear function from a dense linear subspace of
Si to S2 and P"(T)T is graph-dense.

Proof. Suppose x is in P"(T)T{S). There is a sequence z
having iVrlimit 0 such that T[z] has iVa-limit x. Hence, since
P"{T)x is x, P"(T)T[z\ has JV2-limit x. Then, since F\T)T(S) lies
in Z"(P"{T)T), P"(T)T is graph-dense.

Suppose x is in Z"((l - P"(T))T). If j is a positive integer,
there is a point ^ of S such that -NiOs,-) < 1/j and iV2(# — (1 —
P"(T))Tzβ) < 1/j. Since P"{T)Tz5 is in Z"(T), there is for each
positive integer j a point ws of iS such that N^Wj) < 1/j and
N,{Pr\T)Tzj - Γwy) < 1/j. Hence, N2(x - T{z5 - wd)) ^ N2(x - (1 -
Pr\T))Tzd) + N2(P"(T)Tz3 - Twύ < 213 and JVi(«y - wy) < 2/j. Thus,
α̂  is in Z"(T). Since a? is lim (1 - F\T))T[z\9 P"(T)x is 0. Hence,
x is 0. Thus, by Note 1, (1 - P"(T))T is the contraction to S of a
closed linear function from a dense linear subspace of St to S2.

DEFINITION. In the setting that Nλ arises from an inner product
Qx for S, we note that the closure in S, x S2 of (1 - P"(T))T is
the common part of the closure of T in Sί x S2 and the orthogonal
complement in Sx x S2 of {0} x Z"(T), which is referred to in [2]
as "the operator part" of the closure of T. We refer to (1-P"(T))T
as the closed part, and to P"(T)T as the graph-dense part, of T.
In particular, in case S is S19 (1 — P"(T))T is referred to as the
continuous part of T.

Note 3. In analogy with Lemma 5.2 of [1], we have that, if
T* is the set to which (r, s) belongs only in case r is in S2 and
Qz(r, T ) is continuous from S to the plane and s is Q2(r, T ), i.e.,
T* is the adjoint of T, and C is the closed part of T, then T* is
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the contraction of C* to the orthogonal complement of Z"{T) in S2.
Indeed, if P"(T)r is not 0, there is a sequence z having JVi-limit 0
such that T[z] has i^-limit P"(2>; hence lim Q2(r, T[z\) is
N2{P"{T)r)\ Hence, r is not in the initial set of T*. If r is in
the orthogonal complement in S2 of Z"(T), Q2{r, Γ ) = Q2(r, C-);
hence, (r, s) belongs to T* only in case (r, s) belongs to C*.

In particular, it should be noted that if the initial set of T is
jSlf T* is continuous. Suppose, now, that L is a continuous linear
function from S2 to S2. Then in order that LT be continuous it is
necessary and sufficient that the final set of L* lie in the initial set
of Γ*. Suppose LT is continuous and y is in S2. Then the function
/ o n S such that f{x) is Q2(Tx, L*y) is continuous and L*y is in the
initial set of T*. Conversely, suppose L*(S2) lies in the initial set
of Γ*. Then the initial set of (LT)* is S2. Hence, LT is continu-
ous.

It may be seen that in case C is a closed linear function, D is
a graph-dense linear function, T is C + D, and the final set of D
is orthogonal in S2 to the final set of C, then £"(£>) includes Z'\T).
Indeed, if x is in Z"{T) and 2 is a sequence having iVrlimit 0 such
that T[z] has iV2-limit x

(1 - P"(D))a; - lim ((1 - P"(D))T[z]) = lim C[z] .

Hence, (1 - P"(D))x is in Z"(C). Since C is closed, Z"(C) is {0}.
Thus, x is in Z"(D). In particular, in case S is $, #"(D) is Z'\T\
D is the graph-dense, and C the continuous, part of T.

In case S2 is the plane and T is not continuous, then the kernel
of T is dense. We note that in this setting Z"{T) is the plane, so
that T is graph-dense.

THEOREM 2. Suppose S is Sx. Then Zr\T) is finite dimen-
sional only in case the contraction of T to a dense linear subspace
W of S19 having finite dimensional algebraic complement in Slf is
the contraction to W of a continuous linear function from St to S2.

Proof. Suppose Zf\T) is finite dimensional, C is the continuous,
and D the graph-dense, part of Γ, and W is the kernel of D with
closure W in Sx. Then T is C on Sx. Suppose Wis not St. Suppose
that U is an algebraic complement in Sλ of W. Then U is finite
dimensional. Suppose P1 is the algebraic projection of Sx onto U
with respect to W, so that Pt is the identity on U and 0 on W.
We note that P1 is continuous. Indeed, with the evident interpreta-
tion of Z"(PX), we have ^"(PO = Z"(l - Px); hence, ^"(P,) lies in
Z7 ΓΊ W. Suppose that P2 is the orthogonal projection of S2 onto the
orthogonal complement in S2 of the finite dimensional subspace,
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D{W). Since D{W) n D(U) is {0}, D(W) is not Όfa). Hence, P2D
is not 0. Since Px is continuous with finite dimensional final set,
DP1 is continuous. We have the identity

P2D = P2DPX + P2D(1 - Pt) = P2ΌPX .

Hence, P2Z> is continuous. We note that Z"{P2Ώ) is {0}, P2(Z"(D))
lies in Z"(P2D), and that JD^) lies in Z"(D). Hence, P2I>(Si) is
{0}. This is a contradiction. Thus, W is Slβ

Suppose that W is a dense linear subspace of Sl9 W has finite
dimensional algebraic complement in S19 and the contraction of T
to W is the contraction to W of a continuous linear function A.
Then (T - AXSJ is finite dimensional. Since Z"(T — A) lies in the
closure of ( Γ ~ A)(S^ and (Γ-A)(S1) is finite dimensional Z'\T—A)
is finite dimensional. Noting that Z'\T - A) is Z"(T), we have
that ΊZ"(T) is finite dimensional. Hence, the proof is complete.

Suppose (S19 Ny) is (S2, iV2) and S is S^ In case the continuous
part of T is self-ad joint with respect to Q2, then Z"{T) lies in Z\T).
Indeed, Z'(T) is the kernel of the continuous part C of Γ, and
Z'\T) lies in the orthogonal complement of

THEOREM 3. Suppose S is Slf C is the continuous part of T,
and D is the graph-dense part of T. Then for x in Si N2(Tx) ^
N2(Cx). Moreover, in case (S19 NJ is (S2, N2) and Z"{T) lies in
Zf{T), for each positive integer p N2(Tpx) ^ N2(Cvx).

Proof. If x is in Sl9 N2(Tx)2 = N2{Cxf + N2{Dxf ^ iV2(C^)2. Sup-
pose (Sίf NJ is (S2, JV8) and Z"(Γ) lies in Z'(Γ). Then CJD is 0.
Hence, for each positive integer p, (C + D)p = Σ? = o DjCp~j. If α is
in S1#

NΛ(Tpx)* = Q2(ΣUDjCp-jx, ΣiUDtC'-'x)

We note in the setting of Theorem 3 that in case A is a
continuous linear function from S± to S2 which agrees with T o n a
dense linear subspace of Sί9 then for each x in S1 N2(Ax) ^ N2(Cx).

The following lemma to Theorem 4 is proved by Kato [4,
Lemma 411, p. 278].

LEMMA. Suppose (B, N) is a normed complex linear complete
space with dual space, (B*9 N*)9 and that (wp, w'p)p=1 is a sequence
in B x B* such that if p is a positive integer N(wv) = 1, N*(w'p) =
1, Wp(wp) = 1, and for j < p, wp is in the kernel of w'ό. Then if
(ap)Γ is a complex-sequence and 1 ^ k ^ m, \ak\ <i 2k~1N^ΣΛTapwp).
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THEOREM 4. Suppose that T is graph-dense and (Su JVΊ) is
separable. Then for each continuous linear function C from Sx to
S2 such that C(Si) lies in the closure of T(Sj) and positive number
ε, there is a dense linear subspace S' of Sx such that for x in S'
N2(Tx - Cx) ^ εN^x).

Proof. Suppose that (Su Nx) is separable and infinite dimensional
and e is an ^-sequence, the term-set of e is linearly independent,
E is the linear span of the term-set of e, and E is dense in St.
Then, with (S*f N*) denoting the dual space of (Sί9 Nλ), there is a
sequence (w9f w'p)? in S1 satisfying the hypotheses of the lemma
such that the linear span of the term-set of (wp)Γ is E. Indeed, if
(w9, wp)l is an w-term sequence in S1 x S* such that if 1 <* j <
p <̂  n, N^Wp) — 1, N*(w'9) — 1, wp(w9) = 1, w'ά(wp) = 0, and the linear
span of the term-set of (wp)ι is the linear span of the term-set
of (ep)i, then since the common part of the set of kernels of
terms of (w'9)ϊ has ^-dimensional algebraic complement in Su there
is a point wn+1 of norm 1 in the linear span of the term-set of
(ep)ΐ+1 and in the common part of the set of kernels of terms of
(w'pyi. Moreover, there is a point w'n+1 of norm 1 in Si* such that
wr

n+1(wn+1) = 1. Note that wn+1 is not in the linear span of the
term-set of (w9yt. Thus, (w9f wp)?+1 is a sequence in Si x S* such
t h a t if l £ j < p £ n + l, Nx{wp) = 1, N?(w9) = 1, w](wp) = 0, and

the linear span of the term-set of {wp)t+l is the linear span of the
term-set of (ep)?+1.

Suppose that T is graph-dense and 0 < ε < .01. If j is a
positive integer, there is a point xi of St such that N^Xj — wά) <
(ε/lO)5* and N2{Tx5) < (ε/10)'. Suppose that A is the linear function
on E such that A(ΣΓ ^ύwi) = ΣΓ aάxά. Then

NX(A ( Σ aw} - Σ ajw^ ^ Σ I α, I N&, - ws)

£ Σ 2̂ -1

^ (e/5)JVi

Hence, A has only one continuous linear extension B to Si and the
operator norm of B — 1 does not exceed .01. Hence B is reversibly
continuous with final set Sx. Since the linear span, X, of the term-
set of x is B(E), X is dense in St. Note that

^ Σ
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S Σ 2'-W ι(Σ a3 w>j (β/lθy ^ (1/2)(Σ (ΦY

Suppose x is in X

N2{TAA~γx) ^ (ejfyN^A^x) ^ (e/5)(l/(l -

Suppose that C is a continuous linear function from Sx to S2

such that (7(50 lies in the closure of T ^ ) and ε > 0. Then T-C
is graph-dense. Indeed, Z"(T-C) is Z'\T\ the closure of Γ(SJ;
moreover, (Γ — C)(Si) lies in the closure of T{S^). There is a dense
linear subspace X of Sj. such that for x in X N2((T — C)x) ^ εN^x).

THEOREM 5. Suppose that (Su Nt) is separable. There is a
dense linear subspace X of Sx such that the contraction of T to X
is the contraction to X of a closed linear function from a dense
linear subspace of Sλ to S2. In case S is Slf then there is a dense
linear subspace X of St such that the contraction of T to X is
the contraction to X of a continuous linear function from Sx to

Proof. Suppose D is the graph-dense part of T. Then there
is a dense linear subspace X of Sx such that for x in SL N2(Dx) ^
Niix). Suppose that B is the continuous linear extension to S1 of
the contraction of D to X. Then T is B + (T - D) on X, the
contraction to X of a closed linear function. In case S is Sί9 then
T — D is the continuous part of T and T is continuous on X.

Note 4. In case S is St and X is a dense linear subspace of Sx

such that the contraction of T to X is the contraction of the
continuous linear function B from St to S2, then the initial set of
the common part of T and B is a dense linear subspace of Sx lying
properly in no linear subspace Y of S1 such that the contraction of
T to Y is continuous.

Note 5. Suppose that (S', Q') is a Hubert space, M is a closed
linear subspace of S', and W is a dense algebraic complement in
S' of M. Then if φ is the algebraic projection of S' onto T7 with
respect to M and P is the orthogonal projection of S' onto M, 1—P
is the continuous part of φ. We note that TF is a dense linear
subspace of S' such that the contraction of φ to W is continuous.

Such a dense proper linear subspace W oί Sf having closed
algebraic complement in S' is one for which there is an inner
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product Qw such that (W, Qw) is complete and the identity function
from (S', Q') to (W, Qw) is continuous. Indeed, if M is a closed
algebraic complement of W in Sf and P is the orthogonal projection
of S' onto M, we may take Qw to be Q'((l — P) , •)• Conversely, if
W is a dense proper linear subspace of S' for which there is such
an inner product Qw, then the set M of all limits in S' of sequences
z having limit 0 with respect to the norm Nw for W corresponding
to Qw is a closed algebraic complement in S' of W and, with P
the orthogonal projection of S' onto M, Qw is equivalent on W to

Note that the formula Q(x, y) = Q'O, #) + Q'(^x, ^ ) defines an
inner product Q for S' such that (i) the identity function from
OS', Q) to (S', Q') is continuous and (ii) φ is continuous with respect
to the norm N for S' corresponding to Q.

Of course, in this example, each power of φ is continuous on
ψ(S'). More generally, it may be seen that, if L is a linear function
and Q is an inner product for S' such that (i) the identity function
from (S\ Q) to (S', Q') is continuous and (ii) L is continuous with
respect to the norm N for S' corresponding to Q, then there is an
AΓ'-dense linear subspace X of S' such that the contraction of each
power of L to X is continuous from (S\ Q') to (S'f Q') Indeed,
the condition that there be an inner product Q for S' for which
(i) and (ii) hold is shown in [3, Theorem 1, p. 2] to be equivalent
to the existence of a positive number b such that for x in S'
Tj7=oN\Lpxy/bp converges. In this case, with l\Sf) the space of
all S'-sequences y for which X^=o N'(yp)

2 converges, Q the inner
product for l\S') given by Q(x, y) = Σ?=o QΌ&,, I/,), and L the linear
function from S' to P(S') given by L(x)p = Lp(x)/(b)p/2, an application
of Theorem 5 to L yields a nonnegative number c and an iV'-dense
linear subspace X of S' such that for a; in I Σ~=o N'(Lpx)2/bp =
Q(Lx, Lx) ^ cJV'(cc)2.
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