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1. Introduction. Let L(s, X) be a Dirichlet L-function, where
X is a nonprincipal character (modgq) and s = o + 4t. A standard
estimate for L(s, X) based on bounds for {(s, w), is

(1) L, DI = CEe=r g™, L zost,
where 7 = |{]| + 2, ¢ = 1/6 (see, for example, Prachar [5, (4.12)]), and
in fact, ¢ can be replaced by a constant < 1/6. An immediate appli-

cation of Richert’s work [6] gives

A

(2) |L(S, X)I é CIT100(1—0)3/2q1~a logZ/Sz., _;_ é o 1 s

which is better than (1) if ¢ is near 1.
Another estimate can easily be obtained from |L(1 + 4, X)| <
C,log 7q and the functional equation of L(s, X) as follows. First,

| L(it, X)| = 2. | (2r)* g2
1 . 1 1 _ . o
X cosEﬂ<1 it + 5 3 X(—1)>F(1 — )L — it, 7|
é 031/7_(]— log 7q .

Now the convexity principle yields for

(8) | L(s, X)| < (C;V'zq log 7q)'~*+(C, log 7q)° < Cy(zq)"**~?
xXlogzq,0 =0 1.

Neglecting dependence on 7, Davenport [2], improved (3):
(4) |L(s, X)| = Cy(2)g"**™”, 0=0=1.

Also, Burgess [1] improved (4) by establishing

IA

| L(s, 1)| < Cie, ) -2+ % <o<1.

By examining Burgess’ proof, it can be seen that the constant
C(e, 7) can be taken to be C,(e)n**~” and his result can be further
sharpened to yield

AN

(5) |L(s, D] < Ga*-g—Celogz, 2 <0<1,

479
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where @ = log g/log log g. The estimates (3), (4), and (5) are better
than (1) if ¢ is large compared to 7.

For o0 =1/2, the previous estimates were improved by Fujii,
Gallagher and Montgomery, [3], who showed that if P is a fixed
set of primes and ¢ is composed only of primes in P, then

(6) l L(% vt X )] < Cle, P)(zq)"™ .

In this paper we prove two more estimates which imply (1), (4), and
(5) and which are better than (2), (3), and (6) in some range of o, 7,
and q. We prove:

THEOREM 1. Let X be a monprincipal character (modq). -Let
12<0=1,7=|t]| +2 and @ = log q/loglog q. Then

(7) | L(s, X)| £ t7°¢***=C* log 7 ,

where C 18 some absolute constant.

THEOREM 2. Let X be a character (modq). Let 1/12<c¢c =<1
and T =|t| + 2. Then

(8) | L(s, X)| € %% 0=9gi=o Jog® q .
In particular, (7) and (8) imply

I L(—;— +4t, X D LV T¢C?log T
and

l L<_;_ +4t, X )[ L %/ q log7q .

The estimates of L(s, X) for €0, 1/2] can be obtained by using
(7) or (8) and the functional equation of L(s, X).

The author expresses his gratitude to Professors P. X. Gallagher
and Lowell Schoenfeld for valuable suggestions.

2. Notation.

e(f(x)) = exp 2mif(x)) .
o = log g/loglogq .

s=o+it,%§o§1.

T=|t|+2.
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C denotes some appropriate absolute constant, not always the same.

3. Application of the estimate of Burgess. In this section
we will show that

| L(s, X)| € w'~¢**=2C* log’c .

We need the following result of E. Bombieri:

LeEMMA. Let N and m be monnegative integers. Let a;, B; be
numbers such that |a; — B;| < 2rmN¥)™ for 1< j<m, and let
f@)=ar+ - +ax", glo)=px+ -+ + G,2™ Let c¢,c, -+ be
complex, and let

S(@, N) = max | Z ce(f(%))l

SN <N 1sn=s

where & = (a,, -+, &n). Then S(B, N) < 6S(@, N).
Proof. For every N,e¢[l, N] we have:

S (o) = 3 cm(f(n))f;l e((8; — ;)

1SnEN,; 1=e<Ng

- i (ﬁ {2@(5},.0;@]-)}@)1%“ can™ e he(f(n) .

Using Abel’s summation formula, we obtain:

S(B, N) < i H |2(B;—a;)|*i - Nmkntti. 28(@, N)

gy o =0 5=1 k;!

= 25(a, N)- i‘, H | 2r(B;—a)Ni|*i

Byl k=0 §=1 k;!

< 28(@, N) ( gom~k/m)’" < 68(@, N) .

LEMMA 2. Let q =2 and let M, N be integers. Let X be a
primitive character (mod q). Then

|3, Un o+ M) < VNgoe.
This lemma can be proven similarly to Theorem 2, {1].

LEMMA 3. Let q and N be integers such that ¢=2 and N <zq.
Let X be a primitive character (mod q). Then

[S= max | 3 X#m)n* < 1V'Nrlogrt-¢"*C” .

NSN SN N+ISasN;
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Proof. We can obviously suppose that 7 log ¢ < N since other-
wise the estimate is trivial. Taking H = [N(rlog z¢)™'] and m =
[log zq], and dividing the sum in S into < 2NH™ subsums, we
obtain:

|S| £2NH™ max max | S L(m)yn=*| .

NsM=2N 1sH{SH M+lsasM+Uy

For every M and H, in the above range , we get

—it
(6) 3 e =| 5 X+ ) ()T
MALSAEM+Hy 1SS H, M
bt fn  w o (D"
=| 2, X("+M)e< Zyr{M o T T e m
ltIHm-FZ

Let B; =0 and a; = (—1)%¢/2rjM?. Then for 1 < j < m|a;—B;| =
[t]-2riMH) < 2rmH)™. Applying Lemmas 1 and 2, we obtain:

m+1
|S| < |2NH™* max max | 3 X(n+M)j+2THm
NSM<eN 1SH SH 1=SnsH

& NHW H¢"*°C® + Nz(r log q) 167
& V'N-7log 7q¢***C” .

From this, the result is easily obtained.

Now we can prove Theorem 1. First, we suppose that X is
primitive. Let N =[zq], M = [r¢*®], L = log (N/M)/log2, N, =
M2l =0,---,L). Using Abel’s formula, the Polya-Vinogradov
estimate for character sums and Lemma 3, we get:

L DI 3 a7+ 35 Awn~ + | 3 Anyn~|

M=ns<N

K M~logM+3S max | S Xmn—

I=0 N SNjs2N, ng'néN;

+n§vtn“’*1| S, A(m)|

Nzzsn

L M'°log M + }T:, N/ max | 3| 1JC(n)‘“I

=0 NSN}S2N) NjsnsN;

+ 7V ¢ N~—logq
< M~log M + 3, N}/ 7 ¢"C*/Tog T + 7V ¢ N~ log ¢
1=0

< M—log M + LMV 7 ¢”*C*VTogt + v/ ¢ N~ log ¢q
<< 7f.l—aq3/8(1—a)Cw log T.

If X is not primitive, then there is a ¢,|¢ and a primitive
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character X, (mod g¢,), associated with X, such that we can write (see,
for example, [5, (6.12)]):

L, 01 = 1 Lo I [1 = 2B | <106 1) T 2.5 1 Lo 2127
and the theorem follows.

4. The proof of Theorem 2. To prove Theorem 2, we need
two lemmas.

LEMMA 4. Let t =0,0<a =1, and let X and X, be integers
such that 0 < X < X, < 2X < ¥, Then

XsoesX

S,= 3 e(tlog (@ + a)) < VX% log’r .
1

Proof. If X <1 7, then the result can be proven similarly to
Corollary 2, [4]. The same method yields

(9) S, e(tlogx — az) < V' X% log’c ,

X=szsX

for X <V'z. If V<X <7 then, by Lemma 3 of [4]

18,| < s V% ot log n — am)| + 0(Xc-7) .

t(Xta)snst{(X+a) n

Here t/(X + a) < V7. With the use of Abel’s inequality, (9) yields
the result for 17 < X < 7%,

LEMMA 5. Let 1/2<oc<1l,t=1and 0=a <1. Then
(s, @) = 3 (0 + @)™ < @™ + T0% log'r
Proof. Let N = %, Using the Euler-Maclaurin formula [see,

for example, [5], (1.7), p. 372]), we obtain similarly to [5], (5.8), p.
114:

i(s, @) -—1:2;;(% L)t = (N+a)—* sgw ¢ — [x]

1 — 8 N (x + a)s+1
- N+ao 1 (@—[2]" S” 1 1 S“’ @ — [z]* 4
1—3s 28(x+a)”+‘N+2s(s+)N(x+a)“+2x
<< 1 + ngo;u—a—Zdu é 1 + ,Z.Z.N—(r——l << ,z.35(1——a)/108 .

If we denote M = [¢*'%®], L = [log (N/M)/log2], N, = M-2' for
l=0,---,L and N;,, = N, then we have
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0SISL  Nj<w<Ng,

N-1
S=2Mm+a)”< 3, (0+a)”+ | (n +a)”
n=0 0<n +1

Using Abel’s formula and Lemma 4, we obtain:

S<a+ M- logM+ >, N° max | >, (n+ a)*|

0sISL NySNjSNpp, NiSnsN,
La '+ M—7logM+ 3, N!* .78 ]og?t L a™°
0SISL

- 3t—0)/108 Iogs .

This proves the lemma.
To prove Theorem 2, we can obviously suppose ¢t = 1, otherwise

the result follows from (1). Using Lemma 5, we obtain:
L5, 1) = a7 3 Wm)L(s, mf)|

< q—o i ((q/m)a + Z.35(1—a)/108 logs T) << ,Z-Sﬁ(l—a)/losql—a 10g3 ,Z-q .
m=1

Note Added in Proof. We would like to draw attention to a re-
cent paper by D. R. Heath-Brown, “Hybrid bounds for Dirichlet
L-function,” Inventiones Mathematicae, 44 (1978), 149-170, which
contains a better result than our Theorem 7.
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