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A Peano space is a connected, locally connected and locally
compact metric space. A region in a space X is an open
and connected subset of X. A space X is σ-connected if every
sequence Al9 Az, of closed, mutually disjoint subsets of X,
with at least two of them nonempty, fails to cover X. A
connected space X is unicoherent (resp., σ-unicoherent) if for
every pair H, K of closed and connected (resp., and <χ-con-
nected) sets with union X, the intersection H Π K is connected
(resp., <τ-connected).

THEOREM. Let X be a plane Peano space. Then the
following properties are equivalent:

(a) X is unicoherent;
(b) There exists a cover of X formed by unicoherent

regions Z7Ί c U2 c with compact closures;
(c) X is σ-unicoherent, and
(d) If Mi, M2, is a sequence of closed, mutually disjoint

subsets of X such that X — Mt is connected for every i, then
X— (M1 U M2 U •) is connected.

1. Introduction. It is a well known fact that every unicoherent

Peano continuum X satisfies the following property, which we shall

call property A:

If M19 M2, is a sequence of closed, mutually disjoint subsets
of X such that X — Mt is connected for every i, then X — (JΓ=i Mt

is connected.

It has been proved that certain unicoherent, noncompact Peano
spaces also satisfy this property. In 1923, Miss A. Mullikin ([7])
proved that the plane has property A. (In 1924, S. Mazurkiewίcz
([6]) simplified considerably Miss Mullikin's proof). In 1952, van Est
([10]) proved all Euclidean spaces also have property A. Recently,
in 1971,. J. H. V. Hunt ([4]) gave an example of a unicoherent, non-
compact Peano space (contained in R3) which does not have this
property, and proposed the problem of finding a class of Peano spaces
with property A and containing all Euclidean spaces. Finally, in
1973, E. D. Tymchatyn and Hunt himself ([9])1 discovered such a
class, described by the following theorem:

1 The authors are indebted to Professor Hunt for his many helpful comments.
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Every Peano space with the following property (which we shall
call B):

There exists a cover of the space formed by nnicoherent regions
Uι(zUϊ <zU2ci Uϊ aUzd with compact closures2),
has also property A.

Analyzing Hunt's example quoted above one wonders if there
exists a plane Peano space which is unicoherent but does not have
property A. In 3.2 below, we give a negative answer to this question,
because for plane Peano spaces, unicoherence, property A, property
B and σ-unicoherence3 are all proved to be equivalent. In the proof
we use the theorem of Tymchatyn-Hunt quoted before.

2* Definitions and preliminary results* A Peano space is a
connected, locally connected and locally compact metric space. A
continuum is a compact and connected space. The space X is a
semicontinuum if for every pair of points a, beX there exists a
continuum in X containing α, 6. A region in a space X is a con-
nected and open subspace of X. A connected space X is unicoherent
if for every pair H, K of closed connected sets with union X, the
intersection H Π K is connected. A space X is σ-connected if every
sequence A19 A2J of closed, mutually disjoint subsets of X at least
two of which are nonempty, fails to cover X. A space X is locally
σ-connected if for every x e X and every neighborhood V of x, there
exists a σ-connected neighborhood of x contained in V. A connected
space X is σ-unicoherent if for each pair H, K of closed σ-connected
sets with union X, the intersection H Π K is σ-connected.

We shall state without proof some results needed in the proof
of the main Theorem 3.2. The first of them is obvious. For the
others, we give a reference.

2.1. Let Ay X be subsets of R2 such that i d . If R2 — X has
no bounded components, then every bounded component of R2 — A
is contained in X.

2.2. Let U be a proper open set in a Hausdorff continuum X
and let T be a component of U. Then Fr T Π Fr U Φ Φ. (See, for
instance, [2], 2.48.)

2.3. Let XczS2 be unicoherent and locally connected. Then
S2 — X is a semicontinuum. (See [1], page 75, Th. 1.)

2 Since the regions Un form a cover and each Uΰ is compact, it is clearly equivalent
to assume that Ui c U2 c .

3 This last concept was introduced by A. Garcia-Maynez in [3].
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2.4. Let X be connected, locally σ-connected and completely
normal. If X is σ-unicoherent, then X satisfies property A. (This
can be obtained easily from Theorem 3.2 in [3]).

2.5. Let X be connected and locally connected. If X satisfies
property A, then X is unicoherent.

Proof. By Theorem 3 in [8], it is enough to prove that if R, S
are regions in X with union X, then R Π S is connected. But then
A — X — R and B = X — S are disjoint, closed and nonseparating
subsets of X. Since X has property A, the set X - (A U B) = R Π S
is connected.

3* Main theorem* Before proving the main theorem, we shall
prove a result which we have not found in the literature.

3.1. Let XczR2 be connected and locally connected.
(a) // X is unicoherent, then R2 — X has no bounded components.
(b) If X is a Gδ and R2 — X has no bounded components, then

X is unicoherent.

Proof, (a) Identify S2 with R2 U {°o}. According to 2.3, S2 - X
is a semicontinuum. Proceeding by contradiction, assume R2 — X has
a bounded component H. Select a point q e H. Let L be a continuum
in S2 — X containing oo9 q. Let T be the component of L — {oo}
containing q. Since Γ c R2 — X and T Π H Φ Φ, we must have TcH.
Therefore, T is bounded, that is, oo g Γ~. But according to 2.2,
every component of L — {oo} contains oo in its closure, a contradiction.

(b) We proceed again by contradiction assuming X is not unico-
herent. There exists then an essential mapping / : X-> S1. According
to (3), page 84 in [1], there exists a simple closed curve J c X s u c h
that flJ-.J-^S1 is essential. Let D be the bounded component of
R2 — J. Necessarily, D — Xφ Φ, because D e l would imply that
/1J U D is nonessential (because / U D is a disk and hence is con-
tractible) and, therefore, f\J would be also nonessential. There
exists, therefore, a component H of R2 — X intersecting D. Then,
HaD and H is bounded, a contradiction.

The Example 3 described in [5] is a connected and locally connected
subset X of R2 which is an infinite countable union of mutually
disjoint closed segments Xlf X2, , all lying in a square. A direct
analysis shows X is not unicoherent. According to Miss Mullikin's
theorem quoted in the introduction, R2 — X is connected (because
each R2 — Xt is connected). This proves, incidentally, that we cannot
eliminate the hypothesis "X is a G" in part (b) of Theorem 3.1.
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We are now in a position to prove the main result of this paper.

3.2. Let X be a Peano subspace of R2. Then the following pro-
positions are equivalent:

(a) X is unicoherent;
(b) X has property B;
(c) X is σ-unicoherent, and
(d) X has property A.

(We shall give a cyclic proof (a) => (b) => (c) => (d) ==> (a)).

Proof (a) ==> (b). For this we shall need the following lemma.

LEMMA. Let XaR2 be Peano and unicoherent; let V be an
X-region4 with compact X-closure and let {Lj}jeM be the family of
bounded components of R2 — V. Then U — V U (UJBMLJ) is a uni-
coherent X-region with compact X-closure.

Proof. By 3.1, R2 — X has no bounded components and then,
by 2.1, each LόaX. Hence, Z7cX. Each Lj is also a component
of X — V and since X is connected and locally connected, U = V U
(U/ejr-E'i) is connected (because no Lό can be separated from V).

R2 — U is the only nonbounded component of R2 — V (because V
is bounded). Therefore, R2 — U is closed in R2 — V, that is, there
exists a closed set K in R2 such that R2 - U -= K n (R2 - V). Also,
X~U^Xf)(R2-U) = XnKf)(R2-V) = KΠ(X-V). That is,
X — U is X-closed and U is X-open.

Since the X-closure of V is compact, it coincides with V~ (the
closure of V in R2) and 7 " c l . Further, by 1.47.2 in [2],

Fτ(\JLd) c ( U Fr L Λ " C F" .

Therefore,

U- = V~ U ( U LX = V- U ( U ̂ i) c Fr f U £y
\jeM / \jeM / \jeM

Hence, the X-closure of U coincides with U~ and, being bounded, it
is compact.

Finally, 3.1 implies that U is unicoherent, because U is a Gδ in
R2 (since C7 is [/""-open and U~ is a Gδ in R2) and R2 —U has no
bounded components (in fact, R2 — C7 is connected and unbounded).

4 We shall use the prefix "X—" to indicate that the corresponding concept refers
to the relative topology of X.
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We come back now to the proof of (a) ==> (b).
Let {Vβ}βeL be an X-cover of X with X-regions with compact X-

closure. Since R2 is hereditarily Lindelδf, there exists a countable
subfamily {Vlf V2, •••} of {Vβ}βeL covering X. Let {Ha}aeκ be the
family of bounded components of R2 — F x . By previous lemma, Uι —
VΊ U (\Jaeκ Ha) is a unicoherent X-region with compact X-closure.
Let {Vh, Vi2, . . . , Vίm} be a subfamily of {Vlf V,, •••} such that 7 i =
UjLiVij is an X-region (with compact X-closure) containing V2 and
UT. Applying the lemma again, we can find a unicoherent X-region
U2 with compact X-closure and such that U2 Z) V2. Proceeding induc-
tively, we can get an X-cover {Ulf U2, } formed by unicoherent
X-regions with compact X-closures and such that the X-closure of
Ui is contained in Ui+ι for each i = 1, 2, . This proves X satisfies
property B.

(b) => (c) This follows from the Tymchatyn-Hunt theorem in [9].
(c)=>(d) This is a corollary of 2.4.
(d)=>(a) This follows from 2.5.
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