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GENERAL PEXIDER EQUATIONS (PART I):
EXISTENCE OF INJECTIVE SOLUTIONS

M. A. McKIERNAN

Given open connected 2, 2cR" and given T:02—R
continuous, F" 2-R strictly monotonic, in each variable
separately. The equation is hoT=For for the unknowns
h: T(2)—R, =: 2—2 with z=(fi, -+, f.) a product mapping -
e.g., h{T(z, v)}=F{f(x), g(y)}. If T is one-one in each variable,
then any continuous solution = must be injective or constant
on £; conversely, if an injective solution r exists then T
must be one-one in each variable separately.

1. Introduction. Given a subset 2 & R* for n =2, let &,
denote its projection on the <th coordinate axis. By a wproduct
mapping w: 2 — 2 < R* is understood the restriction to 2 of a map
(fi =+ fu): X2, — R™ defined by n functions fi: 2, — 2, Z R. For
given T. 2 —» R and F": 2 — R, equations of the form

(1 ) h{T(xly ) x’n)} = F{fl(xl)y R f'n(x'n)}

for the unknowns h: T(2) — R and 7: 2 — £ are generalizations of
Pexider equations’. For the most part the literature concerns the
case in which 7 and F' are specified, usually the sum and/or product
of the arguments. In [3] C. T. Ng recently gave a uniqueness
theorem for continuous solutions 7, assuming 7T continuous but with
Flu, -+, %,) =u, + -+« + u,; a generalization to certain topological
spaces appears in Ng [4] and [2]. A simple case of (1) was used
by J. Lester and the author [5] to characterize Lorentz transforma-
tions in R".

2. Formulation of results. Given 2,2 < R* for n =2 and
given T: 2 » R, F: 2 — R. Henceforth assume:

(A-1) T continuous in each variable separately,

(A-2) F ome-to-one in each variable separately,

(A-3) £ open and connected.

THEOREM 1. With (A-1, 2, 3) assume Toh = Foxm satisfied on 2,
where h: T(2) > R and where m: Q2 — 2 is an injective product
mapping. Then T must be strictly monotonic in each wvariable
separately on L.

The existence of an injective solution m then places a severe
! For literature see [1]; J. V. Pexider studied h(xﬂ-y):f(x)—j-g(y).
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condition on T; the following theorems indicate that if continuous
solutions © are to exist, injectivity or at least some local one-to-
one property of w is to be expected. A function will be called
locally nonconstant if it is not constant on any open set.

THEOREM 2. If in addition to (A-1,2,3), T is locally mon-
constant im each wvariable separately them for any continuous
product map 7: Q2 — 3 and corresponding h: T(Q2) — R satisfying
hoT = Fomr on £, either @ is also locally monconstant in each
variable separately or @ 18 constant on £2.

The following theorem is a partial converse to Theorem 1.

THEOREM 3. If in addition to (A-1,2,38), both T and F are
strictly monotonic in each variable separately, them for any contin-
wous product map, T: 2 — 2 and corresponding h: T(2) — R satisfy-
ang hoT = Fomw on R, either m is injective or ™ 18 constant on 2.

3. Proof of Theorem 1. By symmetry it suffices to consider
T in its first variable for all choices of the remaining variables,
denoted by X = (x,, -+, x,). If (a, X) and (b, X) are elements of 2
with a # b, then by (A-2), T(a, X)=T(b, X) implies n(a, X)=n(b, X)
for product functions 7; 7 would not be injective. Hence each X
determines a line \ parallel to the x, axis and 7T(-; X) is one-to-one
on MA 2. Hence T is one-to-one and continuous in each variable
separately. Since 2 was not assumed convex, the domain of T(-;X)
for given X need not be connected (in R) and it remains to prove
that T is in fact strictly monotonic in each variable for all choices
of the remaining variables (either increasing for all, or decreasing
for all). For each point (x, ---, x,) € 2, some open ball around this
point is contained in 2 and define V:Q2 — R" by Vi, ---,x,) =
(£1, ---, 1) according as T is strictly increasing (+1) or decreas-
ing (—1) in each variable within that open ball. Since V is constant
on some neighborhood of each point in 2, V is continuous on 2
and all of the 2n sets V%1, --., 1) are closed and disjoint.
Since 2 is connected, all but one of these sets must be empty.

4, Proof of Theorem 2. Consider the two dimensional case
m{T(x, y)} = F{f(x), 9(y)}, valid on some open connected 2CR% 2,, 2,
denote the projections of 2 on the 2 and y axes, f and g are
continuous on 2, and 2, respectively. Let N.(x): =]Jx — ¢, x + ¢,
the open interval.

LeMMA 2. For (z, ¥, in 2, if f is constant on some N.(z,)
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then g 18 also comstant on some N,(y,) and conversely.

Proof. Choose ¢ > 0 sufficiently small so that N.(x,) X N.(y,)C
2 with f(x) =k constant on N.x,). Since T(-,y,) is locally non-
constant and continuous, T(N.(x,), ¥,) contains an open interval I;
since h{T(x, y,)} = F{k, g(y,)} is also constant, » must be constant on
I. With %, chosen in N.(z,) such that T(x, v, is in I, so also is
T(x, y) in I for all ¥y in some N,(y,); hence A{T(x, v)} = Fik, 9(¥)}
is constant, that is, ¢g(y) is constant by (A-2) for v in N;(¥,).
Similarly for the converse.

LemmA 3. If f is constant on some closed interval [a, bl 2,,
a < b, then for some 0 > 0, f is also constant on la — d, b+ o[CL,.
Similarly for g relative to intervals in 2,.

Proof. With be 2, so also (b, y,)e 2 for some y, and since 2
is open, [b —¢, b+ ¢l X [y, — &, ¥, + €] L for some ¢ > 0. Choose
2,€1b — ¢, b =N(x,), a neighbourhood of z, on which f is constant;
by Lemma 2, ¢ is constant on some N(y,). But again (b, y,) €2
with ¢ constant on N(y, implies f constant on some N(b), thus
extending [a, b] to [a, b + d]. Similarly for the end point a¢ and
for g relative to 2,.

If f is constant on some open interval, so also on the closure
in £, of the maximal extension of the interval on which f is
constant; this maximal extension must also be open in 2, by Lemma
3. Sinece 2, is connected, f must be constant on £, itself. In view
of Lemma 2, g will be constant on 2,. A similar argument applied
to any two of the arguments of = in R" proves the theorem.

5. Proof of Theorem 32.. With T strictly monotonic in each
variable separately, T is locally nonconstant in each variable also;
the results of §4 are therefore applicable and it remains only to
prove that if 7 is not injective on 2, then some f; is constant on
some open set in ©Q,. Consider again the R? case using f, g as
before. If f(a) = f(b) for some a < b, then for some a < ¢ < b,
f(c) extremizes f (choosing max. or min. as required) on [a, b] and
in every N.(¢) two points x,, x, can be found satisfying f(a,)=f(x.).
With ce 2, so also (¢, y,) € 2 for some y,€2,, and for sufficiently
small ¢ > 0 so also N.(¢) X {y} 2. Hence f(z,) = f(x,) with [x,,
2] X {9y} < 2; for this =, x, choose 2, in the open interval |z, x|
such that f(x,) extremizes f on [x, x.]. Assume f(x,) = f(x) for all

2 A similar argument may be found in [3].
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2, < o < x, and note that x, < x, < x,. Since T is strictly monotonic
in each variable assume T(x, ¥, < T(x, ¥,) < T(x:, ¥,) and define
I, Iy, I'yc 2, as follows: I'y = {y| T(w,, %) < T(w,, ¥) < T(z o)}, Iz =
{y| T(xo, v) < Tz, ¥0)}, and I'y = {y| T(x,, ¥,) < T(x:, ¥)}. By continuity
each I', is open and y,eI', AI'yAT'; thus defining a neighborhood
N(y,) of y,. For every ye N(y,) follows T(wx, ¥o) < T(x,, ¥)< T(xs, yo)
and T(x, ¥) < T(x, ¥) < T(x, v); therefore there exist points «a, B¢
oo, @[ satisfying T(a, y,) = T(x, y) and T(8,y) = T(x, ¥,). The
equation hoT = Fom then implies F{f(a), 9(y,)} = F{f(x), 9(y)} and
F{f(8), 9} = F{f(x), 9(W)}. But f(x) = f(a) and =f(B8) and since
F is now strictly monotonic in each wvariable, ¢g(y) = g(y,) follows.
Hence ¢ is constant on N(y,), and by §4, ¢ is constant on 2, and
f is constant on £2,. When applied to any two arguments of the
original equation in R", n = 2, the theorem follows.
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