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In this paper we discuss the following conjecture:
Conjecture: L e t D={Dlf ••-, Dn}, DcN, N t h e s e t o f

positive integers. Then there exists a permutation of N,
call it (ak: keN) such that {|αfc+1 - ak |: k e N} = D iff
(A, - ;Dn) = l.

We also consider the following question:
Question: For what sets D={Dlf'"fDn} does there

exist an integer Me N and a permutation {bk: k = 1, , M}
of {1, —, Af} such that {\bk+1 — bk\:k = l, •••, ik f- l } = D.

We answer the conjecture and the following question in
the affirmative if the set D has the following property: For
each DreD there is a DseD such that (Dr, Ds) = 1.

In the following, we shall say that (ak: k e JV), N the set of
positive integers, is a permutation if every integer n e N appears
once and only once in the sequence (ak:keN). Set dk = \ak+ί — ak\.

In a previous paper, [1], we proved the following theorem.

THEOREM 1. Let (md: j e N) be any sequence of positive integers.
Then there exists a permutation (ak: keN) such that \{i\dt = j}\ = mό.

In constructing such permutations we could use infinitely many
differences. We now ask if permutations of N can be constructed
where the set of differences comes from a finite set. We make the
following conjecture.

CONJECTURE. Let D = {D19 , Dn}, DaN. Then there exists
a permutation (ak:ke N) such that {dk: k e N} = D iff (Dlf , Dn) = 1,
where (Dlf ••-, Dn) denotes the g.c.d. of the numbers, D19 •••, Dn.

In this paper we show that the condition is necessary and that
it is sufficient if corresponding to each Dr e D, there is a D8 such
that (Dr, D.) = 1.

For n = 1, the condition that the g.c.d. be 1 gives that D={1}.
For the set, D = {1}, set ak = &. Clearly, {4: ft e iV} = 0.

LEMMA 1. Let D - {Dlf , J5Λ}, DaN. If there exists a per-
mutation (ak: k e N) such that {dk: k e N) = D, then (Dl9 , Dn) = 1.
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Proof. Set d = (A, , A*) If d > 1, then by inducting on k
one can show that ak = a^moάd), which implies that (ak:keN)
cannot be a permutation. Thus d = 1.

Lemma 1 shows that the conjecture is true for n — 1. That the
conjecture is true for n = 2, will follow from Theorms 2 and 3.

THEOREM 2. Lei D = {A, A}, (A, A) = 1 and set Λf = A + A + 1.

T%e% £&erβ exists a permutation (bk: k = 1, , Λf) o/ ίfee se£ {1, , Λf}
with the following properties:

(a) {\bk+1-bk\:k = l, « , M - 1 } = A
(b) 6, = 1, bM = Λf.

Proof. We may assume that A < A Since (D19 D2) = l, we have
that (A, Λf — 1) = 1. Thus, A generates, under addition, the complete
residue system modulo ikf — 1. Set b[ = 0, b[ = A If &'< has been
defined, then, if δ£ + A ^ M - 1, set δί+1 = K + A If δ* + A >
Λf - 1, set δi+1 = δl + A - (Λf ~ 1).

Since b[ — 0 and A is a generator for the complete residue system
modulo M — 1, it is clear that δlr = Λf — 1. Furthermore, if b'k + A ^
M - 1, then |δl+1 - δ'fc| = A, and if 61 + A > Λf - 1, then |δ;+

x - δί| =
|6i + A ~ (Λf- 1) - 6; I = IA - (A + A) ί = A Thus (δL: fc = 1, , M)
has the properties,

(a) Ib'k+1 — b'k\e D and for each i9 there is a yk such that A —

|6I + 1 -δί l , and
(b') δί = o fδ^ = i r - i .

Set bk = 6̂  + 1. Clearly (δ*: k = 1, , Λf) has properties (a) and (b).

THEOREM 3. Let D = {A, •••>•£>»} wiί& ( A , , D J = 1- If there

exists an Me N and a permutation {bk: k = 1, , Λf} o/ {1, , Λf}
^iίfc ίfte properties

( i ) {|δ4+1 - δ*|: k = 1, - - , Λf - 1} - D and

(ii) bx = l,bM = M,
then there exists a permutation (ak: ke N) such that {dk: keN} = D
and each Dt appears infinitely often in the sequence (dk: ke N).

Proof. We shall give a recursive definition for a permutation
(ak:keN). Since ^ = 1 and |δa — 6X| = |δ2 — l | e D , we must have
that b2 — 16 D. Without loss of generality we may assume that δ2 =
1 + A Set ak = bky k = 1, , Λf. We now define aM+j, j = 1, ,
Λf - 1. Set aM+j = Λf - 1 + α i+1, i = 1, , Λf - 1. Clearly, (aM+j: j =
1, , Λf — 1) is a permutation of the set {Λf + 1, , 2Λf — 1}. Thus
(ak: k = 1, , 2Λf — 1) is a permutation of the set {1, , 2Λf — 1}
with the property that αx = 1, a2M-i = 2Λf — 1.
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Note that dM = \aM+1 - aM| = |(M - 1 + A + 1) - M\ = A = c^,
and for Λf - 1 ^ j ^ 1, d^+y = \aM+j+1 - α^+yl = | α i + 2 - ai+ί\ = dy+1.
Thus (d/. i — 1, , M — 1) = (dM+j: j = 0, , M — 2), as sequences.
Thus, each A occurs twice as many times in the sequence (dk: k =
1, , 2Af — 2) as in the sequence (dk: k — 1, , Λf — 1).

We now apply the procedure again and define α2Λf_1+i = 2M —
2 + α i + 1, i = 1, , Jlf — 1. Continuing this process one obtains a
permutation (α*: ke N) with the properties that {]ak+1 — ak\:keN}—D
and each A occurs infinitely often in the sequence (dk:keN).

COROLLARY 1. The conjecture is true for n — 2.

Proof. Apply Theorems 2 and 3.
We can also verify the conjecture for a large class of sets D =

{A, # , AJ> as the following result shows.

THEOREM 4. Let D = (A, , AO, wftere (A, , A*) = 1 and
for each r there exists a s such that (Dr, A ) = 1. Then there exists
an M and a permutation (bk: k = 1, , M) of {1, , M) with the
properties,

( i ) {\bk+1 - bk\: k = I, •• ,M-1} = D and
(ii) bt = l,bM = M.

Proof. For each r there is a s such that (Dr, A ) — l Set
Mr = A + A + 1. Then there exists for each r = 1, , n, by
Theorem 2, a permutation (bk

r): k = 1, , Mr) of the set {1, , J|fr}
such that {|6[rΛ - &ir)|: ft = 1, , M r - 1} = {A, A} and b[r) = 1,
δ ^ - Jfr.

Set δf = &ί», i = 1, , ΛΓlf 5^1+, - (Mx - 1) + 6 ^ , for j = 1, . . . ,
M2 - 1. Thus &! = 1, 6^,+^.! = M1 + ikΓ2 - 1 and D 3 {|δfc+1 - bk\: k =

1, . . . , Jf1 + ΛΓ 1-2}=){A,i?J.
Suppose that we have defined (bk: k = 1, , i?z — (ϊ — 1)), where

(&*: Jfc = 1, , i?z — (Z — 1)) is a permutation of {1, , Rt — (I — 1)},
I < n and ϋ?z = jϋfj. + + Ml9 with the following properties:

( i ) DzD{\bk+ί-bk\:k - 1, . . . , Rt - (I - 1) - 1}=){A, •••, A},
and

(ii) &! = 1, &*,_«_!> = 72t - (ί - 1).
Let i2,+1 - M m + Λ, and &Λz_(I_1)+i = Λ, - (Z - 1) - 1 + 6}V+i1}, i =

1, . . - , i V I + 1 - l .
Thus, we have that if M = M1 + + AfΛ + (% - 1), then (bk: k =

1, , M) has properties (i) and (ii).

COROLLARY 2. Let D = {A, •••,!?»}, where (A, , 2?J = 1 and
for each r there exists a s such that (Dr, A ) = 1. Then there exists
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a permutation (ak: keN) such that {dk: ke N} = D and each element
in D occurs infinitely often in (dk:keN).

Theorem 2 gives rise to the following questions.

Question 1. Given (D19 ••, Dn) = 1, does there exist an MeN
and a permutation (6*: k = 1, , M) of {1, , M) such that

{\bk+1 - bk\: k = 1, ., M - 1} = {A, , DJ?

Question 2. Same as Question 1 but we require that bx = 1,

6* = Ml
Theorems 2 and 4 yield some information concerning these two

questions. Of course, an affirmative answer to Question 2 would
yield an affirmative answer to our conjecture, as Theorem 3 shows.

Consider the set {6,10,15}. Even though (6, 10,15) = 1, we cannot
apply the procedure of Theorem 4 to this triple. However, Question
2 can be answered in the affirmative for the triple {6, 10,15}, as the
following construction shows.

Note that (6, 10) = 2(3, 5). For D = {3, 5}, construct the sequence
(&;-. k = 1, , 9) of Theorem 2. We obtain, (0, 3, 6,1, 4, 7, 2, 5, 8).
Multiply every element by 2 = (6,10), obtaining (0, 6,12, 2, 8,14, 4,
10, 16). Now, 16 just happens to be 1 + 15. Thus, add 1 to the
sequence (0, 6, 12, ) and juxtapose it with (0, 6,12, ) obtaining
(0, 6,12, 2, 8,14, 4, 10,16,1, 7,13, 3, 9,15, 5, 11,17). Now add one to
the sequence, obtaining (1, 7,13, 3, 9, 15, 5,11,17, 2, 8,14, 4,10,16, 6,
12,18), and call this new sequence (bk: k = 1, , 18). Note that
{\bk+1 - bk\: k = 1, , 17} = {6,10,15} and b, = 1, δ18 - 18.

From the above construction, one can glean a proof for the
following lemma.

LEMMA 2. Let D = {Dlf D2, A}, where (Dlt D2, Dz) = 1, (Dlf D2) =
d Φ 1 and D3 + 1 = k(D1 + D2), for some positive integer k. Then
Question 2 and our conjecture can be answered in the affirmative
for the set {A> A» A}
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