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McFadden’s relation |N, 1/(n+1)IC]|C, kl(k>0) is streng-
thened to |N, p.|C|R, A(w), k|(k>0) for suitable {p,} and A(w).

1. Let {p,} be a sequence of complex numbers such that for
n > 0,

Po=p+p+ s +p,#0.

Let S, a, be an infinite series with {s,} as its partial sums.
We define the (N, p,)-transform {t.(s,)} of {s,} generated by the
sequence {p,} by the formula

(L.1) to(s,) = ;

Similarly, {t,(na,)} denotes the (N, p,)-transform of the sequence
{na,} generated by the sequence {p,}. The series >, a, is said to
be summable |N, p,| if {t.(s,)} € BV, i.e., o |t, — t._.| is conver-

gent. (See [7],[5].) In the special case when p, = (n ;:f 1— 1>,

(k > — 1), summability |N, »,.| is summability |C, &|.

Let N =Xw) be a differentiable, monotonically increasing
function of w in (4, «), where A is a finite positive number; and
let p(w) be its differential and let Mw) tend to infinity with w.
For k = 0, we write

Ri(w) = E;Jw Mw) — M@)Ya,
The series >, @, is said to be summable R, \, k| if
1.2) | IelR N )] < =
see [8],[9]. For k>0, N<w<N-+1N=12,--)

TR o] = LD 5 ) — v,

Hence, summability |R, A\, k| is equivalent to the convergence of
the integral

H(w) _ bt
IR YORRE

If every series summable by the method P is summable by the
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method @, we write P Q. If PC Q and Q < P, we write P~Q.
We now define a sequence of constants {¢,} by the identity

oo —1 co
[Z pnw":l =Seax*, c_,=0.
n=0 n=0
If, forn=0,1,2, ...

pn > 0’ pn—i—l < pn+2 < 1

= = s

D o

we shall write {p,} € _#. We write
dn:co+cl+ M +cn;
e,=dy+d, + -+ +d,.

We write P(v), d(w), e(v) in place of P,, d,, e, respectively when
v is replaced by a more complicated expression. We let 4f, =f. —
Susyy, fOr any sequence {f.}.

The following inclusion theorems are known:

1
n+ 1

¢ 0lc|N, | 1C bl ~ B, 2, K], (6> 0).

The first one is due to Mears [6], the second one is due to
McFadden [4] and the equivalence is due to Hyslop [3].

Our object is to prove that under certain conditions on {p,}
and Mw),

IN, p.| C|R, Mw), k| (k>0).
2. We establish the following.

THEOREM. Let

2.1) {pte 2,

(2.2) P@* = O(P,) ,

(2.3) Mw) be an indefinite integral of some function g(w),
AMn +1) = Mn)) _

2.4) (n + 1){ TR } —0Q) .

Then | N, p,| implies | R, Mw), k| for all k > 0.
For the proof we require the following lammas.

LEMMA 1 [1]. Let {p,}e . #. A mecessary and sufficient condsi-



GENERALISATION OF A THEOREM OF McFADDEN 541
tion for 2a,€|N, p,| is

2.4") S ltma)| o
n=1 n

LEMMA 2 [1]. Let {p,}e.#. Then
(i) ¢>0,¢,=0(n=123,:---)
(i) Sealed =d,
(iii) d, = 0 and monotonic monincreasing
(iv) Pd,=1
(v) P,e,=(2n + 1).
For (i), (ii) see Hardy [2] Theorem 22, p. 68.

LEMMA 3. Let {p,}€.#. Then for any fixed k with 0 < k < 1,
(2.2) is equivalent to

(2.5) P, = O(P(w)), where u = [v*].

Proof. If (2.2) holds, by successive application of (2.2) we see
that for any fixed integer 7,

(2.6) P@*) = O(P,) .

Choose 7 so that 2" > 1/k. Then if u = [v*], v £ (w)"* < (u)*. So,
since P, is increasing, (2.5) follows from (2.6).

Conversely, suppose that (2.5) holds. Given any positive integer
v, define v, inductively (on ») by taking v, = v and defining v,(r>1)
as the least integer greater than or equal to v)*. Since {p,}ep
implies that

2.7 P 1,
pr—l

as r — oo, we see that (2.5) is equivalent to

(2.8) P(v,) = O(P,) .

By successive application of (2.8) we deduce that, for any fixed 7,
(2.9) Pw,) = O(P,) .

Choose 7 so that (1/k)” > 2. Then v, > v* so that (again since P, is
increasing) (2.9) implies (2.2).

For the proof of the theorem we require (2.5). The condition
(2.2) is preferable to (2.5) because the former is simpler and inde-
pendent of k.
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LEMMA 4. If (2.4) s satisfied then

)\’(_’”’_+_I.Z_=O(]_), as n—-> oo .
M)
This is obvious.
3. Proof of the theorem. It is enough to consider the case
0 <k <1. This implies the result for k1 =1. We can assume

without loss of generality that ¢, = 0. Then by Lemma 1 and (1.2)
it is enough to show that (2.4") implies

X j L (RE ()N (w)) | dw < oo
Now,
na, = g CuoPot,(va,) .

Then

d_Riw) _ kpw)[ & MRYOR
dw )\'k(w) 7\1k+1( )LZ{)’(w) k’(n)} n vzzlcn—vPvtv(vav)}

_ Ipat) & o) — A M)
= S0 3 Ptva) 5 0w) —rmp Mo, ]

Then

[/ o @stw)op | dw

o]
dw|.

~ o[ [T L0 §lop, 1om)| 20
= o] | ek S P, | 2 o) — w2,

= 0(1)[ pIT |tv(v;v)| Smﬁr(}(v))l Z ) — M) )\:(7’&) oo

Thus it is enough to prove that uniformly in » = 1,

dw

6 o) = | E] S ) — ooy,

=)

Write m = min ((w],v+u). Leta=v+u—-1,b=v+u+ 1.
Applying partial summation to the sum over the range v=<n <
m, we see that the expression inside the modulus in (3.1) is equal to
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(3.2) S 4, Mw) — Ma) —”—‘l@l]d + (M) —Mm))s Mg
n=v n m

+ 3 o) =y M,

n=m+1

=S 0w = xmya (M),

+ 72: A%()\:(W) —_ )\,(n))k—lﬁq(q,&—lt—]%—)_dn—v

) = M) Mg S ) w2,

Here the last term is to be omitted when m = [w], i.e., when w<b.
Hence

J) = J,(v) + J,(v) + Sy(v) + J,(v),

where J,(v), J,(v), J;(v), J(v) denote the expressions obtained by
replacing the expression inside the modulus in (3.1) by each of the
four terms on the right of (3.2). First,

(2|7 ) = M) gy,

J@) £ 3 d, .| 4

o )\'k+1(w)
_ YOI Mm)
= 00 2, 8oy Ty F OV E o i T
Using (2.4) and Lemma 4,
Jw) = 0(1) 3, do=e
n=v N
_ e(fu—1) _ 1
= ot - o(vPv) ,
by Lemma 2(v) and Lemma 3. Next,
) < 3 d, Ml
[ (000 = Ma 1) = 0) = M) ew) gy,
nt+l 7\;k+1(w)

The inner integral can be evaluated and is equal to

%[x(ni 1 )»(%n) {1 B < Mn;(rnl-)k ﬁl)Mn) )k”
_ 1 r(k(nJrl)—N(n) )"_(k(n—{—l) — Mn) )}
In(m)L Mn + 1) Mn + 1)

= ()




544 INDULATA SUKLA

by (2.4). Hence, by Lemma 4,

L) =00 3 Seze = o LD

—O<vp >

by Lemma 2(v) and Lemma 3.
Suppose N < w < N + 1. Then,

MN) g tw) 4
N )\Jk-i—l( )

4+ Mo+ W _ e _Hw) g
7FF_MWS(MW Mo+ ) L

v+u
T = {7 0vw) — vy

= Ju(v) + Ju(v) .

Since

Sv Mw) — Mo + w)* 1>V/,i(l"(”>> W= Wvl—i——;)— ’

clearly

s =0(-48) =o( 1)

by Lemma 2(iv) and Lemma 3.

Now,

0 = 5[0 o) - w2 Ba, 09 gy,

1 da e —_— k-1
(v + O\ + o) S (x(w) MN ) p(w)dw

U

!

A

q
I
o

2
!
-

A

d v+o o
Y0 + ON(Y + 0) SHU Mw) — MN)) p(w)dw

_ oS d, Mo+ 0o+ 1)
= (v 4+ oM@+ o) W+ 0o+ 1)

=O<v;’v>’

by Lemma 4, Lemma 2(v), and Lemma 3. Hence

4

Js(v) = OL/vP,) .
Lastly,
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Hw) k1 M)
g = [ E 3 o — w2 Taw
= 3 lew | 22" 0vw) — My L0 g

I n—v

7=t )\‘k+1( )
13 e -1 dw
ok P n kb

= O(1/vP,),

by Lemma 2 (ii), (iv), and Lemma 3. Hence (3.1) is proved.

This completes the proof of the theorem.

By putting », = 1/(n + 1), Mw) = w (integer) we get the inclu-
sion |N, Y/(n + 1)|C|R, n, k|, k> 0 due to McFadden [4].

My thanks are due to Prof. T. Pati for his suggestion and also
to the referee for his valuable comments.
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