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MODULES WITH SUPPLEMENTS

K. VARADARAJAN

Let M be an iϋ-module and Ncz M. Any Ha M satisfying
= M (i) and H'aH,H' + N = M=>H' =H...

. . . (ii) will be referred to as a supplement of N in M. In
general N need not have a supplement in M. A module M
will be said to have property (Px) if every NaM has a
supplement in M. If for every AaM,Nc:M with AΛ-N—M,
there exists a supplement H of iV in M satisfying Ha A,
we say that M has property (P2). Modules with property
(P2) play an important role in our study of dual Goldie
dimension. In the present paper we determine the class of
rings R with the property that every MeR-moά possesses
property (P2) These ture out to be left perfect rings.
Also the results obtained here throw more light on the
differences between corank and P. Fleury's spanning dimen-
sion.

Introduction* While attempting to dualize the concept of
Goldie dimension, Patrick Fleury [3] introduced the class of modules
with finite spanning dimension. A module M is said to have finite
spanning dimension if for every infinite, strictly decreasing chain
No Ξg Nx 3 N2 g of submodules of M, there exists an integer
j (depending on the sequence) such that Nt is small in M for all
i ^ j. A module H is said to be hollow if H Φ 0 and any X §Ξ H
is small in H. One of the main results of [3] states that any
module of finite spanning dimension can be expressed as an ir-
redundant sum M — Σ?= i Ht of finitely many hollow submodules
Ht of M and that their number n depends only on M. This number
is referred to as the spanning dimension (abbreviated as S'd) of M.
In our earlier paper entitled Dual Goldie dimension [6] we indicated
a completely different way of dualizing Goldie dimension and gave
ample evidence to show that our approach has distinct advantages
over Fleury's approach. Let k be an integer ^ 1 . In [6] we defined
M to have corank ^k if there was an epimorphism /: lf->ΠίU Nt

with each Nt Φ 0. For 1 ^ 0 we defined corank M to be k if
corank M^k, but corank Λf^(fc + 1). If corank M^n for all
n ^ 1, we set corank M = <*>. When M = 0 we set corank M= 0.
In [6] we showed that the invariant corank had many more desir-
able properties to be termed dual Goldie dimension than the
invariant s-d introduced by P. Fleury. Every module with finite
spanning dimension possesses preperty (P2). [3]. In our study of
corank also [6], modules with property (P2) played a special role,
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though the theory of corank works very well for all modules. In
the present paper we characterise completely the rings R with the
property that every MeR-mod possesses property (P2).

1* Modules with property (P2)* Throughout this paper all
the rings considered are associative rings with an identity element.
Unless otherwise mentioned all the modules considered are unitary
left modules and all the concepts are left sided concepts. Let R
be a ring and MeR-moά. If M satisfies (P2) it is clear that M
satisfies (PJ. In [6] we showed that if every submodule of M has
(Px) then M itself has (P2). In particular every MeR-moά has
(P2)<=> every MeR-mod has property (Px).

An epimorphism ε:M->N is said to be minimal if Ker ε is
small in M.

PROPOSITION 1.1. Let NczM and e: P—> M/N a minimal epi-
morphism. Suppose there exists a lift f: P—> M of e. Then H —
f(P) is a supplement of N in M.

Proof. Let ΎJ: M/N denote the canonical quotient map and K =
Ker ε. Then η{H) = ηof{P) = ε(P) = M/N. Hence H + N = M.
Suppose H'aH satisfies Hr + N = M. Let P' = f~l(H'). Then
/(P') = H' and ε(P') = ψf{P') - η(H') = M/N. This yields P ' +
K= P. Since K is small in P we get P' = P. Hence H'

Before proceeding further recall the definition of an M-projective
module due to G. Azumaya [1],

DEFINITION 1.2. Let M be a fixed J?-module. An J?-module P

is called M-projective, if for any exact sequence M^Mft —>0, the

sequence Hom^P, M) —> Hom^CP, M") -» 0 is exact.

PROPOSITION 1.3. Let AaM.NciM satisfy A + N = Λf. Stop-
pose ί/z-βre eccίsίs α minimal epimorphism e: P^> M/N with P an
M-projective module. Then there exists a supplement H of N in
M with Ha A.

Proof. Let a — η/A where η: Af —> M/N is the canonical quotient

map. Then A + iSΓ - M => a{A) - Af/iSΓ. Hence A Λ ikΓ/iSΓ -> 0 is
exact. Since AaM and P is ikf-projective, it follows that P is
A-projective [1]. Hence, there exists a map/:P—>A with aof — e.
Lemma 1.1 shows that /(P) = H is a supplement of iVin Λί. Clearly
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Since any protective iZ-module is M-pro jective for any MeR-
mod, we get the following as a corollary of Proposition 1.3.

COROLLARY 1.4. (a) If R is left perfect then every MeR-mod
possesses property (P2).

(b) // R is semi-perfect then every finitely generated MeR-
mod possesses property (P2).

Before proceeding further we state a result of P. Kasch and
E. Mares [4] which we need.

PROPOSITION 1.5. (F. Kasch and E. Mares). Let P be a
protective module, NaP. Suppose H is a supplement of N in P
and that H itself has a supplement L in P. Then HπL = Q, hence
P — ί f φ L . In particular H is protective.

THEOREM 1.6. The following conditions on a ring R are equiv-
alent.

(1) Every free R-module F has property (PJ.
(2) Every MeR-mod has property (P2).
( 3 ) R is left-perfect.

Proof. (1)=>(3). Assuming (1) we will prove that any Me

jβ-mod has a protective cover. Let F —> M—> 0 be exact with F free.
Let K = Ker/. Let H be a supplement of K in F. Since H has
a supplement in F, from Proposition 1.5 we see that H is protective.
Also Hf] K is small in H [4, or Lemma 2.7 of [6]]. It follows that
f\H:H-*M is a projective cover of M.

( 3 ) => (2) Immediate from Corollary 1.4 (a).
(2 ) => (1) Trivial.
The arguments used in the above proof also yield the following

result:

THEOREM 1.7. The following conditions on a ring R are equiv-
alent.

(1) ReR-mod has property (Px).
(2) R is semi-perfect.
(3) Every finitely generated MeR-mod has property (P2).

2* Surjective endomorphisms with small kernels* Let P be
a pro jective module, NaP. Suppose N has a supplement H in P.
If H also has a supplement in P, then the result of Kasch and
Mares asserts that H is a direct summand of P. In general, when
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H need not possess a supplement in P, we do not know whether
H will be protective. The results in the present section throw some
light on this question.

It is well-known that any surjective endomorphism f:M—>M
of a noetherian module is an isomorphism. A result of Vasconcelos
[7] asserts that if R is a commutative ring and M a finitely gener-
ated module over R, then any surjective endomorphism f:M-+M
is an isomorphism. In [5] M. Orzech obtained a generalization of
the above results. Let R be a ring, MeR-moά, NaM. Assume
either M is noetherian or that R is commutative and M is finitely
generated. Then any epimorphism / : N—> M is an isomorphism. In
this section we will first obtain a useful modification of the above
result of Orzech. For any MeR-mod, we denote the set of small
submodules of M by Γ(M) and partially order Γ{M) under inclusion.
The class of finitely generated i2-modules will be denoted by M{R).

LEMMA 2.1. Let MeR-mod. Then Γ(M) satisfies a-c-c ^=> J(M)

is noetherian.

Proof. The implication <= follows from the well-known fact
that any NeΓ(M) satisfies NaJ(M). Conversely, suppose J(M) is
not noetherian. Let Xλ £Ξ X2 ς= X3 gΞ be an infinite ascending
chain of submodules of J(M). Let x1eX1 and %eX, — Xό^ for
each j > 1. For any k ^ 1 let Nk = Σ*=i R^s- Then Nk e M(R) and
Nk c J(M). Hence Nk e Γ{M). It is clear that N&N&N&
Hence Γ(M) fails to satisfy a c c. This proves the implication =>.

LEMMA 2.2. Let M-^M" be an epimorphism with Ker/ small
in M. Then f(J(M)) = J(M").

Proof. Since f(J(M))aJ(M"), to prove the equality /(J(Λf)) =
J{M") we have only to show that f~\J(M"))(zJ(M). Let yeJ(M").
Then Ry is small in ikf". Since f:M—>M" is an epimorphism with
Ker / small in M, it follows that f~\Ry) is small in M and hence
f~\Ry) c J(M). This proves f-\J{M")) c J{M).

PROPOSITION 2.3. Let MeR-mod, NcM and f: N-+M an
epimorphism with Ker/ small in N. Assume that either J(M) is
noetherian or that R is commutative and J(M) is finitely generated.
Then f is an isomorphism.

Proof. Let K = Ker /. Then K<zJ(N)aJ(M). By Lemma
2.2, g = f\J(N): J(N) —• J(M) is an epimorphism. From Orzech's
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result we see that g is an isomorphism. Hence Ker g = Ker / =
K — 0. This proves that / : N'—> M is an isomorphism.

Let R be any ring and E any injective module over R, NaE
and L a relative complement of N in E (namely N Π L = 0, JV Π
U Φ Q for any L^UczE). Since i? is injective we can assume
that the injective hull E(L) of L is a submodule of E. From JVΓΊ
L = 0 we get Nf] E(L) = 0. Hence L = E(L). Thus any relative
complement in E is injective. If P is a projective i?-module, KaP
admitting a supplement H in P, in general we do not know
whether H will be projective. The following is a result in this
direction. For any Λfejβ-mod let S(M) = {H\HczM, Ha supplement
of some NczM}.

PROPOSITION 2.4. Let P be a projective R module and HeS(P).
If either J(H) is noetherian or R is commutative and J(H) is
finitely generated over R then H is a direct summand of P and
hence H is projective.

Proof. Let H be a supplement of N in P and η: P —• P/N
denote the canonical quotient map. From Lemma 2.7 of [6] we
see that H (Ί N is small in H. From H + N = P we get )?(#) =
P/N. Let α = ̂ |jff. Then H^P/N-^0 is exact. Since P is pro-
jective, there exists a <p: P —> H with

commutative. From a(φ(H)) = ̂ (fiΓ) = P/ΛΓ we get 9?(JEf) + Ker a =
iϊ. But Ker α = i ϊ n AT. Since i ϊ Π N is small in H we get ^(ίί) =
H. Also K e r ^ c K e r ^ . If f = φ\H:H-+H, then K e r / c i V n i ϊ
and / is an epimorphism. From Proposition 2.3 we see that / is
an isomorphism. Let θ = j°f~ι: H-^P where j is the inclusion of
H in P. Then φoθ = θojof-' = / o / " 1 = /dH. Thus θ is a splitting
of φ. If Λ = / - 1 o ^ : P-+H we have JW = f~ιoψoj = / ^ o / = jtf .̂
This proves that fί is a direct summand of P.

3* Corank versus spanning dimension*

REMARKS.

(1) In [5] we proved that if s-dM<ooy then corank M=s-dM.
Also in the same paper we proved that if R is any local ring, and
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M — R x R in i2-mod then corank M = 2. But if R is nonartinian,
then S'dM— oo. Since any local ring is semi-perfect, it follows
form Corollary 1.4(b) that M satisfies property (P2).

(2) For any M with property (P2) and having corank M=n<
oo we have proved the following two assertions in [6].

(a) M = Σ?=i Hi a n irredundant sum with each iί* hollow.
(b) If ikΓ = Σ?=i -HJ is a n irredundant sum with each Ή.] hollow

then k = n.
Thus P. Fleury's main result [Theorem 3.1 of [3]] was extended by
us to the class of modules M with corank M < ^ and satisfying
(P2). The example M = R x R in iϋ-mod, with R a nonartinian
local ring shows that the above class is strictly larger than the
class of modules with finite spanning dimension.

(3) Let S(M) = {H/HczM9H a supplement of some NaM}.
If M is a module with property (P2), we proved in [5] that corank
M— Sup {ftI there exists a strict increasing chain IΓ0SjEΓιS= Si.Hr

fc

of length ft with each HieS(M)}. For the example M — R x R in
i?-mod with ϋ? a nonartinian local ring we have corank M = 2.
Thus there exist strict increasing chains of supplement submodules
in M of length 2 and not more. However S'dM = oo. Thus in
this example Sup {ft | there exists a strict increasing chain iJ0 S " *
£ iϊfc with each iί* e S(ΛΓ) = 2 < s dikf}. This is one instance where
corank is better behaved than spanning dimension.
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