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SOME INFINITE DIMENSIONAL
SIMPLE LIE ALGEBRAS

S. BERMAN

The two dimensional cohomology, with values in the
base field K of characteristic 0, of a simple Lie algebra at-
tached to any non-Euclidean indecomposable Cartan matrix
is computed. We find that dim (H?® (<, K)) equals the nul-
lity of the Cartan matrix which defines . We also show
that there is an invariant 3-cocycle of 2 if and only if the
matrix defining -2 is symmetrizable. This yields cohomo-
logical interpretations for all the known isomorphism class
invariants of these algebras.

Introduction. About ten years ago V.G. Kac [7] and R. Moody
[12] independently discovered a class of infinite dimensional simple
Lie algebras defined over fields of zero characteristic which are
natural generalizations of the finite-dimensional split simple Lie
algebras, and which possess many of the same structural features.
More recently, these algebras have attracted wide interest, due to
the fact that one has a formula, the Macdonald-Kac formula, similar
to Weyl’s character formula, for certain modules of these algebras.
This formula has surprising connections with additive number theory
and sheds new light on Dedekind’s 7-function. See [6], [8], [9], and
[11] for these developments and also the references therein.

A classification theory describing the isomorphism classes of
these algebras is lacking, due to the fact that there are no versions
of the well known conjugacy theorems which hold in the finite
dimensional case. However, in [3], it is shown that the nullity of
the Cartan matrix which defines the algebra is indeed an isomorphism
class invariant, since this is the dimension of the space of outer
derivations. If the Cartan matrix defining the algebra has the pro-
perty that it is symmetrizable (see §1 for definitions) then the
algebra possesses a nondegenerate symmetric associative bilinear
form. This turns out to be an isomorphism class invariant as well,
see [3]. These two invariants are the only known ones to date.

The purpose of the present paper is to give new interpretations
to these invariants, via cohomology. We will show that if & is
one of the algebras under consideration, arising from the Cartan
matrix (4,;), then H¥ <, K) has dimension equal to the nullity of
(4,;). Here H¥(<”, K) is the 2-cohomology of & with values in
the base field K. We go on to show that there is an invariant
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3-cocycle if and only if (A4,;) is symmetrizable, and hence, if this is
the case, then H*.%”, K) is nonzero. We thus obtain a cohomolog-
ical interpretation of all the known isomorphism class invariants for
these algebras. Of course, these results are well known and easy
to prove in the finite dimensional case, (see [5]), because of Weyl’'s
theorem on complete reducibility. However, in the infinite dimen-
sional case we do not have such techniques available and so our
methods are more computational.

In §1 we will briefly recall the structural properties necessary
for our investigation and also fix the cohomology notation we will
use. Section 2 contains our main result on H*.%”, K), and in the
final section we investigate invariant 3-cocycles. Thanks go to R.
Moody for numerous suggestions concerning these matters, and to
J. Lepowsky for suggesting this type of investigation to me.

1. Basic facts and notation. We will use the notation in [3]
but for the convenience of the reader we recall this. For more in-
formation the reader may consult [2], [6], [7] and [12].

An I x 1 integral matrix, (A4,;), is a Cartan matrix if 4, =2,
A; £0,and 4,;,=0=A4,;,=0, for 1 <4,5=,i=3. The Cartan
matrix is symmetrizable if and only if there are positive rational
numbers ¢, ---, ¢ such that 4,;6; = 4;,c,for1 <1, 5 <[. We always
assume that our Cartan matrix is indecomposable, which is the same
as requiring that the associated Dynkin diagram is connected. This
assumption is a matter of convenience and the results we obtain
can easily be extended to the case where the matrix is decomposable.
Also, we assume that (4;;) is not one of the sixteen types of Eucl-
idean Cartan matrices, (see [1] for a description of these). The
reason for this assumption is that the algebras attached to the
Euclidean Cartan matrices have null roots and are not simple and
hence our methods do not directly apply to them.

To any [ x I indecomposable non-Euclidean Cartan matrix (4,;)
and any field K of characteristic 0 there is associated a Lie algebra,
c_gf, over K which is called the universal Cartan matrix Lie algebra
of type (4,;), or universal C.M. algebra, for short. £ is generated
by 3l elements e, f;, h;, 1 <1 <1, subject to the four relations
les, fi]l = 8iihs, Lo, Bl = Aje, [j‘z/z h;l=—A4;f;, and [h,h;]=0, for
1<4 71 It turns out & has a unique maximal ideal <Z (see
[2] and [10] for a description) and we let &~ denote the correspond-
ing simple factor algebra, and again let ¢, f;, h; denote the images,
in &2, of the generators. & is called the standard C.M. algebra
of type (4.;) over K.

Let V Dbe the free Z-module of rank | with basis elements
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o, -, a 80 that V=2a,& --- BZa,. If 57 denotes the linear
span of h,, ---, b, in & then dim 57 equals the rank of the Cartan
matrix (4;;), (see [3]), and we let V act on =& via a,h;) = A;,.
There is a subset, 4, of V such that &¥ = 2Z + 3,4 &, (all sums
direct), where &~ is a subspace of & and [, &S Fop. If
xe€ £, heZ then [z, h] =alh)x. Also, ta;€4 and &, = Ke,,
Loy =Kfi for 1=l If a=3i ,da;ed then either d, =0
for all 4, or d, <0 for all v. Also, 0¢4. One has acd= —aed,
and the elements of 4 are called roots of <. By the above we
can speak of positive and negative roots, and let 4* denote the set
of positive roots and 4= —4" denote the set of negative roots. We
let Z"=3est & and £~ =D~ so that &¥ = P
o P F*t. & possesses an automorphism 7 of period 2 satisfying
ne) = f; for 1 <1 <1, so that (&) = &~. Since we assume that
(4;;,) is non-Euclidean we have that if ae4 then there is some
he o7 for which a(h)=0. If a =>4} da,ed4weletl(a)=3\_d,.
Notice that if ae4* and (@) =2 then each element of & is a
linear combination of elements of the form [x;, x.] where B, v e 4+,
2,€ 55, €5 and B+ v = . A similar statement holds for e e 4™.
Vi denotes the space K@,V and (-, -): VixX Vg — K denotes the
nondegenerate symmetric bilinear form on V. for which the basis
a,, -+, a; is orthonormal.
Let &4 = &7, and for any integer n» =1 let
Fr= 3> < and =7+ 0% .

aed
1Ue) [=n Ita)l=n

Then we have /S s C-.-C &, <---, and &, = &, P &+ for
all n = 0.

It is known that & possesses a nondegenerate symmetric as-
sociative bilinear form if and only if (A4;;) is symmetrizable (see [3]).
Moreover, any two such forms on & are scalar related, since the
radical of such a form is an ideal of <&, and & is simple. From
this it easily follows that if (-, -): & X — K is such a form and
if (e, f;) = 0 for some 1¢e{l, ---,1} then the form is identically 0.

At one point in our argument we will need a slightly bigger
algebra than & which is deseribed as follows. The radical < of
<2 can be written as @ = &~ P &7, P #+ where 2+ (resp. F#7)
is just FBNLH (resp. %’ﬂ&?“), and 57, is the center of 52, and
is in o7 = P, Kh,= <. Now .7+ and <Z~ are ideals of &~ and
we let & denote the factor algebra of <& by <Z~ @ <%+, and we
let 57 denote the linear span of h,, ---, h, in & so that dim 57~ = 1.
Then F = SF @ Sues F, and & is a factor of & by its center
7, = {he SZ)a(h) = 0 for all ac4). Clearly the dimension of 57
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is the nullity of (A;;). When convenient we will identify V, and
(22)x.

When dealing with cohomology we will use the notation in [4,
Problem 12 of Chapter 1, §3, p.88-91], which we now recall. We
readjust this notation to the particular case of the trivial one
dimensional <“-module K. For any integer n = 1, C*(<”, K) denotes
the vector space of alternating linear maps of ¥ X --- X & (n
copies) into K, and C(<,K)=K. C*<¥,K)=@@;,C"(<, K).
For any feC*(<”, K) and z,2,, -+, ,+, € & we let

(’L(x)f)wu ) Cpy) = J(®, ®yy + 00y By)
(6(x)f)($1, DY ﬂ'/',,,): _é;a. f(xl; Tty xj—l[x) xj]y L1y * 7y x'n) ’

and

(df)(wly ) xn-l—l) = Z (‘1)l+]f<[xw xi]! Lyy =y ﬁi’ Tty

1=i<y=n+l
~
Ljy ==y xn-(—l) s

where, as usual, a circumflex over a symbol denotes its omission.
The maps 6(x), i(z), and d extend to linear maps on C*(<, K) and
0 is a representation of <. We have that

(1) O0@)i(y) — «(y)o(x) = i([x, y]) for all x,ye =,

(ii) di(y) + «(y)d = 6(y) for all ye <~

(iii) dé(y) = 6(y)d for all ye &=,
and (iv) d* = 0.

Let Z*(<~, K) be the kernel of d restricted to C*(<~, K), and
let B*, K)=d(C"(<, K)), Z*(=, K) = @By, Z" (<, K) and
B*(<, K) = @3-, B(<, K). From (iv) we have that B*(", K)<
Z"( <, K)and so let HY(<~, K) = Z*(<, K)/|B" (<, K). H" (<, K)
is called the mth cohomology space of & with values in K, and
H* <, K)=@7.,H" (<, K) is called the cohomology space of &
with values in K. It is clear that H%<", K) = K and that HY(.<~,
K) is naturally isomorphic to (</[.Z, & ])* so that for the simple
C.M. algebras <~ we have HY(<, K) = (0). Elements in Z2*(<, K)
(resp. B*(Z, K)) are called cocycles (resp. coboundaries). An ele-
ment feC"(&”, K) is invariant if and only if 6(z)f = 0 for all x € .&~.
It is easy to see that if feC"(<”, K) is invariant then fe Z"(&,
K). Moreover, if fe Z"(<~, K) then 6(z)fe B*(<, K) for all n =0,
since then, by (ii), 6(z)f = d(i(x)f) for any z€ <. If feC™(<?, K)
then Rad(f) = {xe &|f(x, 2, -+, 2,) =0forallz,e &, 1<i<n—1}.
If fe Z*( <, K) is invariant we have that Rad(f) is an ideal of .

It is obvious that dim H"(<, K) is an isomorphism class invari-
ant of &, and so is the existence or nonexistence of nontrivial
invariant elements in Z*(&~, K).
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2. H¥<”, K). Throughout this and the final section we let
< denote a simple C.M. algebra over the field K of characteristic
0 which is attached to the indecomposable I x I Cartan matrix (4,;)
which is non-Euclidean. We are going to show that the dimension
of H¥<, K) equals the nullity of (4,;). To do this we let
2, K)={feZ¥, K)|oZ<Rad(f)}and B{¥~, K) = Z¥<, K)N
B, K). Our first step is to show that Zi <, K) = V., and this
is accomplished via a construction which associates to any ve V, an
elemect f;e Z¥(<~, K). Next, we show that B2, K) = 57*, and
finally that Z*<~, K) = Z<#, K) + B, K). It then follows that
HY <, K)= Z¥(<, K)/|B{<, K) and hence, dim H*( <, K) equals
I-rank (4,;), which is the nullity of (A4,;).

PrOPOSITION 2.1. For any e Vg there s an element f;€
Z{.Z, K) such that file, f;) = 0,{v, a;) for 1 <4,5 <1. Moreover,
Z{(.&2, K) is isomorphic to Vi and hence dim Z¥(#, K) = 1.

Proof. Fix ve V, and let € 52* be the corresponding element.
Thus, (v, a;> = (k) for h,e 57, 1 < ¢ <. Let p be the projection
of &~ onto 57 given by the decomposition .~ = 57 @ ., & and
define f;: x> K by filx,y)=1P(z,y]) for all z,ye. ~.
Clearly, f; is an alternating form on &2, and also, 57 < Rad(f,),
since [57, 271 = (0) and [oF, L)< <~ S Ker P for all aed. It
follows that we can define f;: & x & — Kby filx + 575,y + 575)=
fi(z, y) for any 2, ye ~. f, is alternating and 52 < Rad(f;). We
have that fi(e, f;) = ©(0:;h;) = 0,7, ;) for 1<4,j <1. Finally,
using the Jacobi identity of &© we easily obtain that f; e Z¥( <~ K).
This yields the existence part of our result.

Clearly the mapping which assigns to any v e V. the element
fre Z{<, K) is a linear injection. Next, assume that fe Z¥ <, K),
and let o, Be 4,2, € &£, x5€ 5. We have that for any he o7, 0=
f([xm xﬂ]’ h) = f([xm h]1 xﬁ) - f([xﬂ) h’]’ xa) = (a + B)(h)f(xm xﬂ)~ It fol-
lows that f(.&7,, &%) = (0) unless (a + B)h) =0 for all he2#”. In
particular, since (4,;) is non-Euclidean, we have that f(.~, &%) = (0)
for all Bed,p+#—a,, Say fle,f) =7 for 1 <1< and let
Y = i~ Y. Then fle, f;) = frle, f;) for 1<14,5 <1 Letting
g=f—f we find that ge Z} <", K) and that e, f,cRad(g) for
1 =<7 <1 But it is easy to see that the radical of any element in
Z¥ (%, K) is a subalgebra of &, and it follows from this that
Rad(g) = &, and hence, that f=f,. Thus, V. is isomorphic to
ZY{, K).

LeMMA 2.2. B ¥, K) = 57 *.
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Proof. If ¢eCH{¥, K) = &= then dpe B, K) is given by
dg(l,, 1,)=—¢([1, L,]), so since [.&, ¥ = &, we have that d¢ = 0 if
and only if ¢ = 0. Now d¢e B, K) if and only if S#ZCRad(dg).
Clearly, if &%, S Ker¢ for all a4 then 57 < Rad(dg). Conversely,
if 2#CRad(dg) then let a4, 2,€ .54, and choose he 5% such that
a(h) # 0. Then 0 = d¢(x,, h)= —a(h)p(x,), so that ¢(x,) =0, and
hence &~ C Ker¢ for all acd. Thus, B, K) is isomorphic to
{p e &<*| .~ CKer ¢ for all ae 4}, and it is clear that this last space
is isomorphic to S7*.

We are now in a position to obtain the main result of this
section.

THEOREM 2.3. Z¥<, K) = Z¥{<, K) + B, K). In particu-
lar, the dimension of H¥ <, K) equals the nullity of the Cartan
matriz (A;;) which defines the C.M. algebra & .

Proof. As in [3] we let {es}, be a basis of &t such that
€€ 2%, for all i =1 and e, =¢; for 1 < j =<1. Lete 5, = 7n(e,) s0
that {e_; }7-, is a basis of ¥ " ande_,, =f; for 1 <j <1. For each
1 =1 we choose h;e 97 such that g,(h;,) =2 for all 1 =1 and h;=
[e;, f;] for 1 <5 <1. This choice of an infinite collection of h,’s is
possible because (4,;) is non-Euclidean.

If feZX(<, K) we define g e &* by the equations ¢(e;,) = (1/2)
fles,, hy), ple_s,)=—1/2 f(e_s,, h;) for ¢ =1 and #(h) = 0 for all he 7.
We certainly have that f+ deeZ%(”, K). If 4,5,k =1 then 0=
df(es,, h;, hy) implies that B.(h;)f(es,, hi) = Bhi)f(es, hy). Taking k=1
in this yields 2f(es;, h;) = Bi(h;)f(es,, hi) = 28:(h)p(es,), so that fles,
1) = Buh)gles,) = §(les, h)=—dg(es,, hy). Thus, (f + dg)es, h,) =0
for all 4, 5 = 1. Similarly, (f + d¢)e_s,, h;) = 0 for all 4,5 =1 so if
g =/f+ d¢ then we have that g(F*, &) = (0) = 9(&¥~, &), and
geZ¥(<, K). Next, note that 0 = dg(e, f;, b;)=—9(le;, fi], ;) +
9(le:, k;l, 1) — 9([fi, hjl, e), which implies g(hy, b;) = ah;)g(e;, fi) —
a;(h)gle, ) =0 for 1 4,5 <1. It now follows that 52 < Rad(g)
so that f + d¢ = ge ZY(<, K), and hence fe Z}(.<, K) + B(.<, K).
Combining this with Proposition 2.1 and Lemma 2.2 now yields our
result.

REMARK 2.4. (a) Since in [3] it is shown that the dimension of
the outer derivation algebra of &~ is the nullity of (4,;) and since
this space is isomorphic to H¥<¥”, &) we have that H (¥, K)=
HY(%, &¥). Moreover, it is shown in [3] that for any n = 2 there
exists a symmetrizable, and also a nonsymmetrizable, Cartan matrix
with nullity =.
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(b) There are no nonzero invariant elements in C*<~, K). In-
deed, if feC¥ <, K) and 6(x)f = 0 for all x € &~ then we must have
that fe Z%(<, K). But then if [, 1, ;€ < we have that 0 = df({,,
L, L)=—f(L, L], L) + f(L, L], L) — f([L, L], ). Since 0 = o(1)f (L, L,)=
—f([Iu Iz], Is) - f(I2y [Iu I3]): "‘f([Iu Iz], Is) + f([Iu Is]y Iz), we obtain f([Izy
L], ) = 0. Thus, ([, . <], &) =0, and this implies that f = 0.

3. Invariants in C¥ &2, K). Our main goal here is to show
that there is a nonzero invariant element in C3* &, K) if and only
if the matrix (4,;) which defines &~ is symmetrizable. Moreover, we
go on to show that if (4,;) is symmetrizable then the vector space of
invariant elements in C% <&, K) is of dimension one and does not lie
in B, K). It follows that when (4,;) is symmetrizable we have
H¥<#, K) #+ (0). Of course if feC¥<”, K) is invariant then it is
in 23«2, K). We begin by rccalling the following result of [3].

THEOREM 3.1. & possesses a nondegenerate symmetric associa-
tive bilinear form if and only if the matrix (A,;) which defines &
18 symmetrizable.

Using this result we have

LEMmA 3.2. If the matrixc (A,;) which defines & is symmetriz-
able then Z3(<¥, K) has a nonzero imvariant element.

Proof. Define feC¥<~, K) by flx, v, z) = ([z, y], #) for all z, ¥,
z€ < where (-, ): ¥ x ¥ — K is any nondegenerate symmetric
associative bilinear form on <. f is nonzero since (-, -) is nonde-
generate and [, <] = &°. An easy computation, [see 5], shows
that f is invariant and hence is in Z%.&”, K).

We now assume that fe Z°(<”, K) is a nonzero invariant element.
Thus, if I, & for 1 <1 <4, we have

(3.3) SUL, L], Ly W)= — 7, [, L], L) — S, Ly [L, LD -

Setting [, = h,, = h' e 5~ and letting [, =x, € &, [, =2, &
for a, Be 4, we obtain, from (3.3), that

(3.4) (a + BYR)f(W, oy p) = 0 .

Setting , = &', 1, = " € & and letting |, = z,€ &, in (3.3) we
obtain, taking I, = h e 5# such that a(h) # 0,

(3.5) S, R 2,) =0.
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LeEMMA 3.6. Let fe Z3( ¥, K) be a monzere invariant element.
Then there is a symmetric bilinear form (-, -): SF X # — K such
that (hy, b)) = f(ha, €, i) for 1<k, 1 =L

Proof. For 1<k,i=! define B, = f(h, €;, f;). Then if k =1
we have, using (3.3), that

Bki = f([ek! fk]’ € fz) = —f(fky [ek) ei]y .fv.) - f(fk: () [ek: fz]) .

Since © # k, [e, f;] = 0, and hence, using (3.3) once again, we obtain
B, = flew le,, fil, 1) + flexs fir i) = By. Thus, the ‘IX1 matrix (B)
is symmetric. Clearly, if d,, ---,d, e K and >)._,d.h, =0, then
S A f(he, €5y [1) = Dken dipBy; = 0, so that we can define (hy, h,)=
B,, for 1 <k,1 <1, and extend by linearity to obtain the desired
pairing.

Our goal now is to show that this symmetric pairing on 57 is
nondegenerate. To do this the following lemma is crucial.

LemMmA 38.7. If fe Z¥(~, K) is invariant then
Sy Ly L], L) = S, [L, L, L) + f, Ly [Ls, L)

for any l,e ¥,1 <1 < 4.

Proof. 0 = 6(L)f = di(l)f + i(l)df = di(L)f by (ii) of §1. Thus,
i(L)f € ZX(, K) so that

WALy L1, L) = ()F([L, L], L) + )W, [L, LD .
This is the desired equality.

LEMMA 3.8. Let feZ¥(<”, K) be a monzero invariant element
and let (-, -): S XF — K denote the corresponding symmetric
bilinear form defined by (hy, h;) = f(hy, €5y f;) for 1<k, 1 <. Then
the form (-, -) s nondegenerate.

Proof. Assume he 7 and (h,h') =0 for all e 57. We will
show that » = 0. We begin by noting that if 1 <74, 4,k <1, then
S(h, h’j’ h) = f(hy, [ej9 fj], hw) = f(h,, [ea'r hk]y fa) + f(h, €;» [fj; hk]), by
Lemma 3.7. Thus, f(h,, k;, b)) = 0, so we get f(h, h’, b"") = 0 for any
W', h" e 2#. Since (h, h’) = 0forall h’ € 2~ we have that f(h, ¢, f;,)=0
for 1 <47 <1. These facts, together with (3.4) and (3.5) imply that
fh,,1) =0 for any I,I'e &£. Now we use induction and assume
that f(h,1,') =0 forany I, ['e <&, where n = 1. Let a, Be4, (a)|=
(B =n+1, and let 2,€. &, 2,€ 5. Then if a + 8 #0, (3.4)
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implies f(h, x,, €;) = 0. Assume aec4d* and that B=—a. Since
n +1=2 we can assume that x, = [x,, ¢;] for some e 4%, x, € <5,
and 1 <7 <!. Then

f(h, Loy xﬁ) = f(h7 [xT’ ei]! mﬂ) = f(h’ [xfy xﬂ], ei) - f(h: XL, [xﬁ’ ez]) ’

by Lemma 3.7. By induction each of these terms is 0.
We now have that h e Rad(f), so since & is simple, f = 0, and
Rad(f) is an ideal of <, it follows that » = 0 as desired.

THEOREM 3.9. C¥.&?, K) has a mnonzero imvariant element if
and only if the Cartan martrix defining & 1is symmetrizable.
Moreover, the space of invariant elements in C¥ ¥, K) is at most
one dimensional.

Proof. Let feC*<?, K) be a nonzero invariant element, and
let (-, -): 5#Z x5 — K be the nondegenerate symmetric form associ-
ated to f. Recall that f(h, e, f;) = Bu = (b hy) for 1 <k, 1 <1,
We have that

Bys = flhu, e £= =3 ffu lew bl b
1 1
= '—'E' f(fu [eiy hk]r hz) - E‘(«fu €y [hzf hk]) )
by Lemma 3.7. Thus, since [h;, k] = 0, we obtain that
B, = By, = ’;—f(hi; Ae, fi) = "21*AkiBii , for 154,61,

Since (-, -): ¥ x2¥ — K is nondegenerate we obtain that B, # 0
for 1 < ¢ <1. Thus, we can replace f by (1/B.,)f, if necessary, to
assume B, = 1. Let ¢, =1/2B;, for 1 <7 <. Then we have that

Ase, = % A;By =B, =B = %AM-BH = Aye;, for 1<i,j<I.

Since (4,;) is indecomposable and integral, and since ¢, = 1/2, we see
that ¢;€Q and ¢; > 0 for 1 <j <1. Thus, (4,;) is symmetrizable.
Moreover, all the ¢,’s are completely determined by the condition ¢,
equals 1/2, and so it follows that the space of invariant elements in
C¥<, K) is at most one dimensional.

We close by noting the following:

COROLLARY 3.10. If the Carten matrix defining & 1is sym-
metrizable then H*(&, K) = (0).

Proof. Let (-, -): &£ x < — K be any nondegenerate symmetric
associative Dbilinear form and let fe Z3<”, K) be the invariant
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element defined by f(z, ¥, 2) = (z, [y, 2]), for all z,¥y,ze. <. It is
enough to show that f¢ B(.<, K).

Assume fe B, K) and choose g € C¥(.<°, K) such that dg = f.
Let & Dbe the subalgebra of type A4, in & generated by the
elements e, h,, fi, and let g denote the restriction of g to & x.&”.
Then ge C¥.%”, K) and if se.%” then 0 = 6(s)f = 6(s)dg = db(s)g, and
this implies that 6(s)g € Z2%(<”, K). Thus, 6(s)je Z*%(.%”, K) for all
s€.%. SinceC¥.%”, K) is a finite dimensional .%-module, it is com-
pletely reducible, and so it follows, see [5], that §e Z%(.$”, K), and
hence dg = 0. We have 0 = dg(h,, e, f)) = dg(hn e, f)) = f(hy, e, fi)=
(b, e, £1]) = ([hy, €], f))= —2(e,, f1), so that (e, f)) = 0. From this it
easily follows that (-, -): ¥ X< — K is degenerate. This is the
desired contradiction.

REMARK 3.11. It would be of great interest to have more in-
formation on the cohomology of &, such as the dimension of
H*(%?, K) for n = 8, or the existence or nonexistence of invariant
elements in C"(<¥, K) for n = 4. This information would possibly
yield new isomorphism class invariants for standard C.M. algebras.
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