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We consider real-valued functions defined on intervals
on the real line R, and we denote the extended real line
by R.

The theme of this paper is the idea that, when a fune-
tion has a derivative that is equal to some A c R on a dense
set, the derivative can take other (finite) values only on a
rather thin set. Our most general result shows that, in
particular, the hypothesis ‘‘the derivative is equal to 4 on
a dense set’’ can be replaced by ‘‘at each point of a dense
set, at least one Dini derivate equals A.” As corollaries
we obtain unified and rather simple proofs of some more
special known results, which we now state.

A function can be discontinuous at each point of a dense set
and yet be continuous at each point of a co-meager (residual) sub-
set of its domain. However, the following theorem of Fort [4]
shows that such a function cannot be differentiable at each point
of a nonmeager set.

THEOREM F. If fiI— R where I is an open interval and if f
18 discontinuous at each point of a dense subset of I, then the set
of points where f has a (finite) derivative is meager in I.

(For a different proof, see [1], p. 131; two rediscoveries are in
[3] and [10].)

Recently, Cargo [2] used harmonic analysis to prove

THEOREM C. If f ¢s a real-valued function of finite variation
defined on a compact interval I, and if, for some AcR, f'(x) = A
on a dense subset of I, then the set of those points at which f has
a (finite) derivative different from A is meager in I.

In 1903 W. H. Young [11] proved

THEOREM Y. If f:I— R where I is an open interval, then the
set of all points at which at least one of the Dini derivates of f is
infinite is a G, subset of I.

In this paper we use real-variable methods to establish a result
(Theorem 2) that includes Theorems F and C (without the hypothesis
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of finite variation) as corollaries. We also give a short, elementary
proof of Theorem Y, observe that Theorem F is an easy consequence
of Theorem Y, and then prove a theorem (Theorem 8) that has
Theorems 2, Y, F, and C as corollaries.

2. The main theorems.

THEOREM 1. Let f: I — R where I is an interval, and let Ac R.
If f'(x) = A on a demse subset of I, then the set of those points at
which f has a (finite) derivative different from A is meager in I.

Note that Theorem C is an immediate consequence of Theorem
1. Since each interval is a Baire space with respect to the inherit-
ed metric, we have

COROLLARY 1. If fi:I— R has a (finite) derivative at each point
of the imterval I, if A€ R, and if f'(x) = A on a dense subset of I,
then the set of points at which f'(x) = A is nonmeager and co-meager
iwn I; and, hence, each subinterval of I contains uncountably many
points at which f'(x) = A.

Theorem 1 is a special case of, but easier to prove than, the
following result.

THEOREM 2. Let f: I — R where I is an interval, and let Ac R.
If at each point of o dense subset of I at least one of the Dini de-
rivates of f has the value A, then the set of those poimts at which
f has a (finite) derivative different from A is meager in I.

Clearly, Theorem C is a corollary of Theorem 2.

To prove that Theorem F is a corollary of Theorem 2, suppose
that a function f is discontinuous at each point of a dense subset of
an open interval I. Let F denote the set of points in I at which f
has a (finite) derivative. We want to prove that F' is meager in I.
Let D, (D_.) denote the set of points in I at which at least one
Dini derivate of f is equal to +co(—c). Then D,,U D_, is dense
in I, since f is clearly continuous at any point at which all Dini de-
rivates are finite. Hence, each open subinterval of I contains an
open interval in which either D,, or D__ is dense. Call an open
subinterval of I distinguished if either D,., or D_. is dense in the
subinterval, and let G denote the union of all distinguished intervals.
Our previous observation shows that I\G is nowhere dense in I.
Clearly, G is separable since R is separable. According to Lindelof’s
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covering theorem, G = |4, G, where -{G,, G,, ---} is a countable set
of (not necessarily disjoint) distinguished intervals. According to
Theorem 2, each FFN G, is meager in G, and, hence, in I. Finally,
F={Fn{I\G}UU. (FnG, is meager in I, as desired.

Proofs of Theorems 1 and 2. In each theorem, it is enough to
consider the set S where f’(x) < A, since the set where f'(x) > 4 is
the set where (—f)w)<—A. If A is finite, S is contained in
Ur-iUsn-. E,,,, where E,, consists of all points x in I such that
yeland0 < |y — x| < 1/n imply that (f(y) — f@)/(y —2) < A — 1/m;
if A=+ oo, replace A — 1/m by m. To show that S is meager in I,
we have only to show that each E, , is nowhere dense.

Suppose that some Ey , is dense in some open interval J. In
Theorem 1, there is a dense set of points x at which f'(x) = A; let
%, be such a point in J. Since Ky, is also dense in J, for each
positive k, there exists x,€ Ey ,\{x,} such that x, —>x, as k — oo.
Thus, if k& is so large that |x, — x,| <1/N, then (f(x,) — f(x,))/
(@, — ) < A—1/M (or < M if A=+ ). Letting k— o, we get
flx) = A —1/M (or £ M), contradicting f’'(x,) = A. Therefore, each
E, . is nowhere dense.

In Theorem 2, at each point of a dense set least one of the Dini
derivates has the value A4; let x, be a point of the dense set that
is also in J. Then there exists, for each positive integer %, a point
2, € J\{x,} such that, as k — <o, 2, — 2, and (f(z,) — f(@,)/( — x,) — A.
As for Theorem 1, for each positive integer %k, there exists a point
2, € Ey 4\{x,} between «x, and z,. For all sufficiently large k, we have
0<|z, — 2] <1/N and 0 < |z, — ;] <1/N. Hence, since x, € Ey y, for
all sufficiently large %k, we have (f(x,) — flx.)/ (@ — 2,) < A —1/M
(or M) and (f(2,) — f(x)/(, — x,) < A —1/M (or M). Clearly,

J@) — f(w) _ f2) — (%) 2 — @ _}_f_(ﬂ> — J@) % — @, .

b
R — % e — % R — %o Ty — %y 2 — Lo

and the right-hand side of the last equation is a convex combination
of the two difference quotients, each of which is less than 4 — 1/M
(or M) for all sufficiently large k. Letting k& — «, we obtain
A<A—1/M (or M), which is a contradiction; and, again, each E, ,
is nowhere dense in I.

The original proof of Theorem Y is quite complicated (see [11]
or [9], pp. 402-404). We now give a simple, elementary proof.

Proof of Theorem Y. For each positive integer n, let F, denote
the set of all xel such that |(f(¥) — f(x))/(y — x)| < n whenever
yel and 0 < |y — x| < 1/n. Also, let F' denote the set of all points
at which each Dini derivate of f is finite. Then it is geometrically
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clear (and not difficult to prove analytically) that F = -, F,. Once
we prove that each F, is closed in I we shall be done. Suppose
that » is a positive integer and that « is a limit point of F, in I.
We want to prove that xe F,. Let y be a point of I such that
0<|y—2 <1l/n. We want to prove that

(1) SO —f@)
¥ —a

Since z is a limit point of F,, there exists a sequence 2z, z,, 2, - - -
of points of F,\{zx, y} such that z, > 2 as &k — . Next, note that,
for each positive integer k,

(2) W —J@) _ S@) - y—o  fo)-fR)r -2z

Yy — 2 Yy —x Y — 2 X — 2 Y — 2

Since 2, —x as k- ~ and z,¢ F, for each k, it follows that

f@) = f@) | -,
T — % -
for all sufficiently large %. From lim,..(x — z,)/(y — 2z,) = 0, we
conclude that

lim f@) — fz) ¢ — 2, =0.
fo—soo T —2 Y2

Finally, since lim,_..(y — 2)/(y — z,) = 1, we see from (2) that

(3) lim S) — f(z) _ fy) — f(@) .
e Y — 2, y—x
Since z,¢ F, for each k and lim,.... |y — 2.] = |y — 2| < 1/n, it follows
that
(4) W) — f&) < n for all sufficiently large & .
Y — %

From (3) we obtain

S) — f(=)

Y — 2z

_ | )~ F@) |
Y —x

(5) lim

k—o0

We conclude from (4) and (5) that (1) holds, as desired.

Thus, F = Uz, F, is an F, subset of I, and I\F is a G, subset
of I, that is, the set of all points at which at least one of the Dini
derivates of f is infinite is a G, subset of I. This completes the
proof of Theorem Y.

Next, we shall prove that Theorem I is a simple consequence
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of Theorem Y. As we noted above, the set of discontinuities of f
is a subset of the set of all points at which at least one of the
Dini derivates of f is infinite. Since the former set is dense in I,
so is the latter. By Theorem Y, the latter set is a G, subset of I.
Since a dense G, subset is co-meager (see [8], p. 185), it follows that
the set of points at which all four Dini derivates are finite is
meager in I. Finally, the set of points at which f has a (finite)
derivative is meager in I because it is a subset of the latter set.

3. An extension. Next, we shall prove a theorem that has
Theorem 2 as a direct corollary. If the domain of a real-valued
function f contains an open interval containing a real number z, we
define the set D(f;x) of derivates of f at x to consist of all Ac R
for which there exists a sequence =z, 2, %, --- of real numbers dis-
tinet from x and converging to z such that lim,..(f(x.) — f())/
(x, —x) = A (see [7], pp.115-116). The set D+(f;«a) of right de-
rivates of f at x and the set D_(f;z) of left derivates of f at
are defined in the obvious way. Clearly, D(f;x) = D*(f;z)U
D_(f;x). One can prove that D(f;x) is a closed subset of R and,
if f is continuous in a neighborhood of z, that D(f; ) is an interval.
The usual Dini derivates are extreme unilateral derivates (see [7],
p. 116). For example, the upper right (Dini) derivate of f at x is
just the largest element of D*(f; x), that is

fH(x) = lim sup JW) — @) _ ey D+(f;x) .
u—z+ U —x
Of course, f has a derivative at « in the extended sense if and only
if D(f; x) consists of just one point of R.

THEOREM 3. Let f: 1 — R where I is an open interval, and let
AecR. Then the set of x such that D(f;x) contains at least one
element of {A, + o, —c} is a G, subset of I.

Proof. If A=+ or A=— o, the desired conclusion follows
from Theorem Y, which we just proved.

Suppose that Ae R. Let F denote the set of all points at which
each derivate of f is finite; let D, denote the set of all xe I such
that Ae D(f;x); and, for each positive integer =, let E, denote the
set of all x€ I such that

) = f@ _ 4=

1
Y — 2 n

whenever yel and 0 < |y — z| < 1/n.
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First, let us prove that I\D, = U, E,. Suppose that z e U;-, F,.
Then z € E, for some positive integer n. If 2, — 2 as &k — « where
x, € I\{x} for each %k, then 0 < |z, — 2| < 1/n for all sufficiently large
k; hence, since z¢ E,,

Sfla,) — f) — A 2L

T, — X T n
for all sufficiently large k. Thus, (f(,) — f(x))/(x, — x) cannot con-
verge to A as k — o, that is, xe I\D,. Next, suppose that x¢
I\Uy-, E,. Then, for each positive integer =, x€ I\E,; and, hence,
there exists y, €I such that 0 < |y, — 2| < 1/n and

) =@ _ 4| o1
Yo — n

Then y,—a as n-— o, y,eI\{x} for each =, and (f(y,) — f(@))/
(¥, —x) — A as m - o; consequently, x¢ D,, that is, x¢I\D,, as
desired.

Next, let us prove that, for each positive integer =, F'N E, is
closed in F. Let x,€ F be a limit point of FNE, We want to
prove that x,€ E,. Given y€ I such that 0 < |y — x,| < 1/n, it will
suffice to prove that

(6) fy) — flx,) — A zi

Y — % n

Since x, is a limit point of F'N E,, there exists a sequence z,, «,, X, - - -
of points of E,\{x, ¥} such that x, > 2, as k — . Now, clearly, f
is continuous at z, since z,¢ F. Hence,

(1) f@y) — f(w,) as k—— .

Since x, — x, as k — oo, it follows that 0 < lim, ., [y — x| = |y — 2, |<
1/n. Thus, there exists a positive integer k,, such that 0 < |y — 2, |<
1/n if & > k,. Since x,<€ K, for each k, it follows that

(8) M—A‘giwheneverk>kl.
Yy — n
From (7) we obtain
[y) — f&) _A‘ - lf(w —f@) 4,
Y — X Y — %

and (9) combined with (8) yields (6). Thus, each F'N K, is closed in F'.
Since FN({I\D,) =FNU E, =Uz, (FNE,), it follows that
FN(I\D,) is an F, subset of F. By Theorem Y, F' is an F, subset

(9) lim

PERSS
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of I. Moreover, if U is an F, subset of V, and V is an F, subset
of W, then U is an F, subset of W (see [8], p.63). Hence, F'N
(I\D,) is an F, subset of I. Finally, by De Morgan’s law, I\{(F'n
(I\DY} ={I\F}U D, is a G, subset of I, that is, the set of x such
that D(f;®) contains at least one element of {4, + o, —c} is a G,
subset of I. This completes the proof of the theorem.

Next, let us prove a corollary of Theorem 8 that, in turn, has
Theorem 2 as a direct corollary.

COROLLARY 2. Let f:I— R where I ts an interval, and let
AecR. If, at each point of a dense subset of I, A is a derivate of
f, then the set of those poimts at which f has a (finite) derivative
different from A is meager in I.

Proof. Without loss of generality we may, and do, assume
that I is open.

Since D, = {xeI: Ac D(f;x)} is, by hypothesis, dense in I and
D,c D,U(I\F) where F' is the set of all points at which each Dini
derivate of f is finite, it follows that D, U(I\F) is dense in I. Ac-
cording to Theorem 3, D, U (I\F') is a G, subset of I. Since D,U
(I\F) is a dense G, subset of I, it is co-meager in I, that is, I\{D,U
(I\F)} = I\D,JNF is meager in I. Since the subset of I where
f'(x) exists (finite) and f'(x) = A is a subset of {I\D, N F, it, too,
must be meager in I.

4. Conclusion. We note that a trivial modification of the
proof of Theorem 2 yields Corollary 2 directly. Also, “finite” may
be deleted in the statements of Theorems 1 and 2.

When this investigation was in the final stages, we discovered
that it overlaps some recent research of Garg [5]. In particular,
our Theorem 1 follows from Garg’s Proposition 3.9 and also from his
Corollary 5.2.

While this paper was in press, we learned of Filipczak’s paper
[3a]. Our Theorem 2 is a corollary of his lemma (p. 74). However,
our Theorem 3 is in some sense stronger than that lemma since it
asserts that a potentially smaller set is residual.

Finally, it should be pointed out that our observation that Fort’s
theorem is an easy consequence of Young’s theorem was anticipated
by Garg [6] in 1962.
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