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There are many facts known about the size of subsets of
certain kinds in free lattices and free products of lattices.
Examples: every chain in a free lattice is at most countable;
every "large" subset contains an independent set; if the
free product of a set of lattices contains a "long" chain,
so does the free product of a finite subset of this set of
lattices. Here we investigate these problems in the setting
of a variety V of m-lattices, where m is an infinite regular
cardinal. An m-lattice L is a lattice in which for any
nonempty set S with |S|<m, the meet and join exist in L.
We obtain generalizations of many unitary results to the
in-complete case. Our basic set-theoretic tool is the Erdόs-
Rado theorem.

1. Preliminaries* Lower-case German letters denote cardinals.
Lower-case Greek letters denote ordinals; cardinals are identified with
initial ordinals.

A family (Si\iel) of sets is a A-system with kernel D iff
St n Sj — D whenever i Φ j and i, j e I. The cardinal n is strongly
m-inaccessίble iff ha < n whenever a <m and ί> < π. For example,
(2^)+ is strongly m-inaccessible [2, Lemma 1.26], where 2^ = Σ(2a\a<
m). Note that 2ϋ ^ m, and equality holds if the Generalized Conti-
nuum Hypothesis (G. C. H) is assumed. Under G. C. H., if π > m is
the successor of a regular cardinal, then it is strongly m-inaccessible.

Let π > m be regular and strongly m-inaccessible. The Erdos-
Rado theorem [3, Lemma 1] states that for any family (Sa\a<n)
of sets with |S α | < m whenever a < ti, there is N Q n with | JV | = rt
such that (Sa\aeN) is a J-system.

In this paper, m is an infinite regular cardinal. The prefix
"m-" is consistently used to extend concepts from the usual case of
finitary joins and meets; for further details, see [6] and [7].

A variety V of m-lattices or m-varίety is a class of m-lattices
that is closed under m-homomorphic images, m-sublattices and prod-
ucts. V shall always denote a nontrivial m-variety.

The F-free m-product L of a family {Lt\iel) of m-lattices in
V is the m-lattice Le V (unique up to isomorphism) that contains
each Li (isI) as an m-sublattice and is m-generated by X = U(L i | ΐe
I) (disjoint union) such that any family <pt: Li—>K of m-homo-
morphisms into any Ke V can be extended to an m-homomorphism
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of L into K. In particular, if each Z^ (i e /) is a one-element lattice,
then L is the V-free m-lattice generated by X. We omit mention of V
if it is the variety Lm of all m-lattices. We also omit m if m = fc$0

Let X = {xa\a <m} be a set of variables. The m-polynomials
in X, defined in [6], are built up using formal joins and meets of
less than m elements, starting from X. The set Pm(X) of all m-
polynomials in X has cardinality 2*. Let L be an m-lattice that is
m-generated by a set X. We can express any element aeL as
a = p(a) where p e Pm(X), Y c X is the set of variables appearing
in p, and a is a mapping from Y to X By induction on the rank
of p (see [6]), it is easily shown that any aeL has such a represen-
tation with a one-to-one (that is, distinct variables are substituted
by distinct elements of X); such a representation is called proper.
A subset Y of an m-lattice is m-irredundant iff the following
condition and its dual hold: whenever a ^ V B with α 6 Γ , 5 £ Y
and 0 < \B\ < m, it follows that ae B. In particular, an m-irredund-
ant subset is an antichain.

2 The results* In a F-free lattice, every chain is countable.
This result is proved in F. Galvin and B. Jόnsson [4] in a much
sharper form. Our first result generalizes their sharper form.

THEOREM 1. Let V be a nontrivial m-variety, and let it be a
regular cardinal that is greater than m and strongly m-inaccessible.
If a set of cardinality n is a subset of a V-free m-lattice, then it
contains an m-irredundant subset of the same cardinality.

COROLLARY 1. Every V-free m4attice satisfies the (2^)+-chain
condition, that is, it has no chain of cardinality (2m)+.

A subset S of a lattice is quasidis joint iff a Λ δ = c Ad when-
ever a,b, c, de S with aφb and cφd. A lattice satisfies the
n-quasidisjointness condition iff it contains no quasidisjoint set of
cardinality it. Since no m-irredundant set with more than two
elements can be quasidisjoint, we have

COROLLARY 2. Every V-free m-lattice satisfies the (2™)+-quasi-
disjointness condition.

A subset 7 of a free m-lattice L is m-independent iff the
m-sublattice of L m-generated by Y is (isomorphic to) the free
m-lattice generated by Y. Sinde m-irredundancy is equivalent to
m-independency for subsets of a free m-lattice [6], we obtain a
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result due to F. Galvin and B. Jόnsson [4] in the m = ^ 0 case.

COROLLARY 3. Let n be a regular cardinal that is greater than
m and strongly m-inaccessible. If a set of cardinality n is a
subset of a free m-lattice, then it contains an m-independent subset
of the same cardinality.

B. Jόnsson [9] proved that the F-free product of lattices (Lt\i e
I) satisfies the m-chain condition (m is regular and >V$0) iff for all
finite Γ £ J, the F-f ree product of (Lt\ie If) satisfies the m-chain
condition. Our next result generalizes this.

THEOREM 2. Let V be an m-variety. Let nbe a regular cardinal
that is greater than m and strongly m-inaccessible. Let L be the
V-free m-product of the m-lattices Lte V, ίel. Ifr for all J Q I
with \J\ < m, the free m-product of (Lt\isJ) satisfies the n-chain
condition, then so does L.

If n is singular and cofinal with ^ 0 , then there are two lattices
satisfying the n-chain condition whose F-free product does not
satisfy the n-chain condition. If n is cofinal with ^0> then there
are countably many chains of cardinality <tt, whose F-free product
does not satisfy the n-chain condition (B. Jόnsson [9] and G. Gratzer
and H. Lakser [8]). The next two results are the analogues for
m-lattices.

Dm will denote the smallest nontrivial variety of ut-lattices
(generated by 2, the two-element m-lattice).

THEOREM 3. Let nbe a strongly m-inaccessible singular cardinal
whose cofinality is greater than 2~. Then there are two Boolean
m-algebras in Dm satisfying the n-chain condition such that their
V-free m-product does not satisfy the n-chain condition.

THEOREM 4. If n > m is an infinite cardinal of cofinality m0

with m0 <̂  m, then there are m0 complete chains of cardinality less
than n whose V-free m-product does not satisfy the n-chain condi-
tion.

Some open problems are listed in § 6.

3. Proof of Theorem 1* Let n be as in the statement of the
theorem, let L be the F-free m-lattice generated by a set X, and
let Y be a subset of L with | Y\ — n. Since n is regular, 2^ < n.
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Hence, we can assume that each element of Y has a proper repre-
sentation a = p(ά), where the same m-polynomial p is used for each
element of Y. For notational simplicity, we further assume that,
for some cardinal m0 < m, a — (xa

a \ a < mo> whenever ae Y, where
tfel for all a < m0. (Note that xa

a Φ xa

β for a Φ β.)
Consider the sets Sa = {xa

a \ a < m0} for a e Γ. By the Erdόs-Rado
theorem, there is a subset 3Γ' £ 3f with | Y' \ — n such that (Sa\a e
Yf) is a J-system, whose kernel we denote by D. For each ae Y',
the inclusion D Q Sa induces a map >fra: D-+ m0 in the obvious way.
Since \{fa\ae Y'}\ <; m?° = 2m° < n, we can assume that <f a is the
same map for all α e f . This means that if xa

a e D (ae Y', a < m0),
then x% = ^ for all 6 e Γ .

We first show that Yf is an antichain in L. Supposing other-
wise, there are a,beY' with a <b. We define an m-homomorphism
φ:L~> L as follows: φ(xa

a) = cc« and 9(α?ί) = #« whenever α < mo;
otherwise, if x e X, <p(x) = a;. Then, φ(a) — 6 and 9>(δ) = α. Apply-
ing <p to the inequality a < 6, we conclude that 6 ^ α, a contradic-
tion.

Let a^\f B with α e Γ , ΰ g 7 ' and 0 < \B\ < m. Suppose
that α g ΰ . Fix ce B. We define an m-homomorphism φ:L—>L as
follows: ψ(xi) = xj whenever 6 e JB and α < mQ; otherwise, if x e X,
φ(x) ~ x. Then φ(a) — a and φ(b) = c whenever beB.

Applying <p to the inequality a ^ \/ B, we conclude that a < c,
contradicting that Y' is an antichain. This completes the proof of
the theorem.

4* Proof of Theorem 2* We prepare the proof of Theorem 2
by

LEMMA 1. Let L be the V-free m-product of m-lattices Lo, Llf L2;
let L3 be an m-lattίce and let e e L3; and let p = p(x, y) and q =
^(JC, K) &β m-polynomials whose variables are x = (xa \ a < β) and
V — {ϊJa\θί < 7). ivβί α αwcί h be β-sequences of elements of Lo; let
c and d be 7-sequences of elements of hλ and L2 respectively, and
let e be the Ί-sequence with constant entry e. If

p(a, c) ^ q(h, d)

in L and

p(a, e) = g(6, e)

in the V-free product K of Lo and L3, then

p(a, c) = q(b, d)
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in L.

Proof. Let Lb = L U {0, 1}, the tn-lattice formed by adding a
new zero and one to L. It is easily seen that Lbe V. Further, let
0 and 1 be the 7-sequences with constant entry 0 and 1, respectively.
We are assuming that (i) p(a, c) g q(b, d) in L and (ii) p(a, e) = q(b, e)
in K. By considering the m-homomorphism from L to Lb that maps
I/o identically, everything in Lx to 1, and everying in L2 to 0, we
conclude from (i) that p(a, 1) <̂  q(b, 0) in ZΛ Using (ii) and the
obvious m-homomorphisms from K to Lb, we also conclude that
p(a, 0) = q{b, 0) and p(a, 1) = q(b, 1) in ZΛ Thus, g(6, 1) ^ p(α, 0) in
ZΛ It is easily shown by induction on the rank that/>(α, 0)^p(α, c)
and g(6, d) ^ g(6, 1) in I,6. Therefore, q(b, d) ^ />(α, c) in L, the
desired conclusion.

Let it be as in the statement of Theorem 2, let L be the F-free
m-product of the family (Lt\ίel) of nx-lattices, and let X=\J(Li\ie
/), a subset of L. Suppose that C is a chain in L of cardinality
tt. As in the proof of Theorem 1, we can assume that there is a
single m-polynomial p and a cardinal m0 < rπ such that each element
a of C has a representation α = p({xl\a < mo», where tfel for
all a < m0. For x e X, i(x) denotes the element j of I such that
xeLd. Since there are less than n equivalence relations on m0, we
can further assume that, whenever a, β < nt0, if the equality i(x%) =
i(xf) holds for some aeC, then it holds for all aeC.

Applying the Erdos-Rado theorem to the sets Sa = {i(Xa)\oc<m0}
for aeC, we obtain a subset C £ C with | C | = n such that (Sα|αe
C) is a z/-system with kernel D. Again as in Theorem 1, we can
assume that if i ( O eD (α e C, a<m0), then i(xa

a) = i(xb

a) for all & 6 C.
We will consider only the case that / — D Φ 0 . Choose kel — D,
set J=DΌ{k), and let ί be a F-free m-product of (L^ieJ).
Further, choose e e Lk. Let ψ\ L —> K be the m-homomorphism that
maps Li identically if i e Ό, and maps everything in Li to e if i e
1 — D. If α < 6 in C, then Lemma 1 guarantees that <p(α) ̂  φ(6).
Therefore, {^(α)|αeC'} is a chain of cardinality tt in K, completing
the proof.

Note that Corollary 1 of Theorem 1 also follows from Theorem 2.
5. Proofs of Theorems 3 and 4. In order to develop a proof

of Theorem 3, we will generalize the concepts and results in § 5 of
G. Gratzer and H. Lakser [8]. Let (Pi\iel) be a family of posets
with 0 and 1. Let k = 0 or 1. For each x in the direct product
Π(Pi\ieI), spk(x) = {ieI\xtΦk}. Also, ZΓ^PJiel) is the set of
all x e 77(Pi | i e I) for which | s f̂c(x) | < m. The m-weak direct product
of ( P J i e / ) is defined as
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LEMMA 2. Let n be a strongly m-inaccessible cardinal whose
cofinality is greater than 2~. If (Pt\ίel) is a family of posets
with 0 and 1 satisfying the n-chain condition, then Z?m(Pi|ΐe I)
satisfies the n-chain condition.

Proof. Suppose C is a chain in i7m(Pΐ | i e I) of cardinality π,
where each Pt satisfies the tt-chain condition. There is no loss in
generality in assuming that C C Π°m(Pt\ieI). For xeC, the sets
spQ(x) each have cardinality less than m and form a chain under
inclusion; therefore, by the Erdόs-Rado theorem (a proof without
appeal to this theorem is not difficult), \{spo(x)\xe C}\ <; 2~. Thus,
there is a chain C QC of cardinality tt and a set J £ / of cardi-
nality m0 < m such that spo(x) — J whenever xeC. For ieJ, let
Ci = πi(C')9 where πt: Π(Pt\ieI)-+Pt is the projection map; since
each Ci is a chain in P*, \Ct\ < tt. Choose tt0 < tt such that
\C\ <; rio whenever i e J . Since C" can be embedded in Π{Ci\ieJ),
we obtain | C | ^ t C < n . With this contradiction, the proof is
complete.

LEMMA 3. Let tt be a strongly m-inaccessible cardinal whose
cofinality is greater than 2™. There is a Boolean m-algebra in Dm

that satisfies the n-chain condition but contains a chain of cardi-
nality n' for every it' < tt.

Proof. Any successor ordinal, considered as a (complete) chain,
is isomorphic to an tn-sublattice of a power set. For each α < tt,
let Ba be a Boolean m-algebra in Dm that is m-generated inside a
Boolean m-algebra A in Dm by C U {0,1} U {c'|ceC}, where C is a
successor ordinal of cardinality α and c' denotes the complement of
c in A. An m-polynomial in which m0 <m variables appear can
represent at most αm° elements of Ba. Since αm° < tt and there are
2^ m-polynomials, it follows that \Ba\<n. Then B = Πm(Ba\a < tt)
is a Boolean m-algebra in Dm and, by Lemma 2, 5 satisfies the tt-
chain condition.

Now we prove Theorem 3. Let J5X be a Boolean m-algebra in
Dm satisfying the condition of Lemma 3. If fc$α is the cofinality of
tt, we can write tt = Σ Otyl£ < ωa)9 where n̂  < n for all β < ωa.
For each β < α>α, let Cβ £ A be a chain of cardinality tt̂ . Let B2

be a Boolean m-algebra that is Boolean m-generated by the ordinal
ωa + 1 inside a power set; then | B21 < tt. Further, let L be the
F-f ree m-product of B1 and B2. For /S < α>α, let C'β = {(a V jS) Λ
03 + lOI&eC/,}; then C= U(C/S'|/9<α)α) is a chain in L. Let ψ:B2->2
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be an m-homomorphism such that ψ(β) = 0 and ψ(β + 1) = 1. We
now define the m-homomorphism φ: L —• Bt ϋ {0,1} by φ(x) if x e B19

and φ(x) = ψ(x) if xe B2. Since φ((x Vβ) Λ (β + 1)) = #, it now
follows that I£7/1 = nβ. Therefore, \C\ = n, completing the proof.

Theorem 4 is easier to prove. Indeed, if n <^m, the F-free
m-lattice with n generators {xα | a < n} contains the chain {ya \ a < n}
of cardinality π, where ya = V (#£ |/3 <; α) whenever α<tt . If π>m,
then n = 27(ttβ|α < m0), where nβ < n for all a < m0. Let C and Cα

be successor ordinals of cardinality m0 and nα, respectively, where
α < m0. The proof is completed similarly as in Theorem 3 by
showing that each Ca can be embedded into the interval (α, a + 1)
in the F-free m-product of C and the Ca (a < m0).

6* Open problems*

Problem 1. Is every F-free m-lattice a union of 2^ antichains?
First we show that this holds for m = ^ 0

PROPOSITION 1. Any V-free lattice is a countable union of
antichains.

Proof. Let L be the F-free lattice generated by a set X. Let
p be a polynomial in variables x19 x2, - , xn and let £ be the set of
all aeL that have a proper representation of the form a =p(x19 ,
α?J where ^ e l , H i ^ w . It is enough to show that S is an
antichain. Let σ be a permutation of {1, 2, , n). For a=p(xlf ,
#Λ)> we write σα for j>(ajσ(i), , #„<«)). If α ^ ^α, then σa^σ2a, ,
d*-^ ^ αΛα = α, from which it follows that a — σa. (F. Galvin
and B. Jόnsson used similar reasoning in [4].) Now, let a—p(xlf ,
xn) and 6 = />(#!, ••-,!/») be proper representations with «<, ?/i 6 X,
1 ^ i ^ ^, and suppose that a ^ 6. Let A = {a?!, •••,«,) and B —
{yi, '' •> V%} We can assume there is an integer k with 0 ^ k <^ n
and there are elements zlf , zk e X such that A — B = {zu , zk}
and A Π B = {i/4+1, , 2/J. Applying the obvious endomorphism of
L to the inequality a ^ 6, we obtain pfo, , xn) ^ p ^ , , zk,
Vk+i, , 3/ ); by the previous case, a = pfe, •••,«*, 2/fc+1, , 3/ ). Let
<p be the endomorphism of L that maps Zi to /̂i> and vice-versa
(1 ^ i ^ fc), and maps all other elements of X identically. Applying
φ to the inequality p(zί9 , zk, yk+19 , yn)^p(ylf •••,!/»), we obtain
6 ^ α, completing the proof.

The following example shows that similar reasoning will not
settle the uncountable case. (For notational simplicity, we only deal
with the m = y î case.)
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Let F be a nontrivial variety of fc^-lattices and let L be a F-
free lattice generated by an infinite set X. We show that, in
contrast with the m = ^ 0 case, permutations of X can create distinct
comparable elements in L. Let p and q be ^-polynomials in
variables {xn \ n < ft)} such that p ^ q holds in F (for any substitu-
tion) but p = q does not (for example, x0 and x0 VΛΓJ. Let x\ be
distinct elements of X for is Z (the integers) and n < ω. Further,
let Pi = p(x\\n<ω) and qt = q(x*n\n < ω). If

and

then α <̂  6 and 6 can be obtained from a by suitably permuting
the elements of X. If a = b, we obtain p0 = g0 by mapping each xi
(i Φ 0, n < ft)) to ΛW|^<ft)) . This would mean that p = q holds
in F, contrary to assumption. Therefore, a < 6. In fact, a chain
isomorphic to the reals R can be obtained from a by suitable
permutations of X. (Let f:Z-^Q be a bijection, and for y e R, let
ay = V(r j i e #), where r< = #< if /(i) < y and r4 = qt otherwise.)

Problem 2. Let n be regular and >m. Do F-free m-products
preserve the π-chain condition?

This problem was answered affirmatively for m = ^ 0 and V=D
by G. Gratzer and H. Lakser [6], For m — ̂ 0 and V = L, an
affirmative answer was found by M. E. Adams and D. Kelly [1] by
separately proving the following two statements:

( i ) The free product of a family (L< | i e I) of lattices is
isomorphic to a subposet of the completely free lattice generated
by the poset \J(Lt\ieI).

(ii) If a poset X satisfies the rt chain condition, then so does
the completely F-free lattice generated by X.

It is shown in [6] that the statement corresponding to (i) for
πt-lattices is valid. On the other hand, the following example shows
that the analogue of (ii) is false.

Let m and tt be uncountable cardinals and consider the poset
X = {Xn\n < ft), a < n} where xa

m<xβ

m iff tn < rt and a < β. Then
X contains only countable chains but the completely F-free lattice
L generated by X contains a chain of cardinality tΐ, where F is an
arbitrary nontrivial variety of m-lattices. For a < n let ya —
y (xl\n < ft)); clearly, {ya\a < tt} is a chain in L. Let a < β < tt.
The isotone map φ: X-+2 defined by φ(xr

n) = 0 if y <; a and φ(x) = l
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for x 6 X otherwise extends to an τn-homomorphism of L onto 2
that maps ya to 0 and yβ to 1; thus, ya Φ yβ.

Problem 3. Is every m-complete chain contained in a Boolean
m-algebra in DJ

If m = xt+, a Boolean m-algebra in Dm is called n-representable
by R. Sikorski [10]. If, for any two distinct elements of an m-
lattice L, there is an m-homomorphism from L onto 2 separating
the two elements, then L is in Dm. Thus, as observed in the proof
of Lemma 3, any successor ordinal is an m-sublattice of a power
set. It also follows that Dm contains every m-complete chain.
(Replace each element of an m-complete chain C by two elements,
forming the chain C; then C is an m-sublattice of a power set and
the obvious map from C to C is an m-homomorphism.) Since the
embedding of a chain into the Boolean algebra that it ϋί-generates
preserves all existing joins and meets (see [5]), any m-complete
chain is an m-sublattice of a Boolean m-algebra. However, the
following example shows that m-congruences of maximal chains need
not extend to m-congruences of Boolean m-algebras. (Contrast with
the m = fc$0 case in [5].) Let B be the power set of [0,1] and let
C be the maximal chain in B consisting of all intervals of the
form [0, x) or [0, x], where xe[0, 1]. The m-homomorphism that
only collapses [0, x) and [0, x],0^x^l, maps C onto [0, 1], Yet,
if m ^ (2**°)+, any m-congruence of B that collapses [0, x) and [0, x],
0 ^ x ^ 1, collapses all of B since [0, 1] C U([0, x] - [0, x)\0^x£l.)
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