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Comparison Theorems. This paper presents a technique
for extending some oscillation results from ordinary to
delay differential equations. According to the technique,
if an oscillation result is known for the ordinary differential
equation

the corresponding result for the delay differential equation

x(n)(t)+f(tfx(q(t))) = 0

may be obtained by a simple change of variables.

The conditions on q and / are mild and in the case of a bounded
delay it is shown that the above equations have the same oscillatory
behavior.

1* Introduction* We consider the equation

(1) xιn)(t) + f(t, x(g(t))) = 0

where n ^ 2. We let R+ — [0, + <*>) and ϋί = (— co, + oo) and assume
throughout this paper that q and / satisfy the following conditions.
q:R+->R and f:R+ x R-+R are continuous, q(t) ^ t for t ^ 0,
q(t) —> co as t~> oof f(t9 x) in nondecreasing in x, and xf(t, x) > 0 if
x Φ 0.

We label the above conditions on q and / as Hypothesis (E) for
a future reference.

For any t0 ^ 0, we let EH = {s\s = q(t) <: t0 for some t ^ t0} U {£0}
By a solution of (1) at t0 is meant a function x: EtQ[j [ί0, ίi) —> R,
tί > t09 which satisfies (1) for all t e [tQ, tj. All solutions of (1) at ί0

are assumed to exist on [t0, oo) for every t0 ^ 0. As in the case of
ordinary differential equations, the existence of solutions on (1) on
[t0, oo) are usually guaranteed by requiring some growth conditions
on /. For details, see [3].

A solution x{t) of (1) at t0 is said to be oscillatory if x(t) has
zeros for arbitrarily large t and nonoscillatory if there exists t* ^ t0

such that x(t) Φ 0 for all t ^ ί*. Equation (1) is said to be oscilla-
tory if every solution of (1) is oscillatory.

Most of the oscillation results which have appeared in the litera-
ture for delay differential equations are generalizations of known
results for ordinary differential equations. Very often the method
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of proof of a generalized result is the same as that of the original
result, but sometimes requiring a severe restriction on the delay.
We propose in this paper to solve such generalized problems by
reducing the study of the oscillatory properties of solutions of
Equation (1) to that of an ordinary differential equation so that
desirable generalizations of some oscillation criteria from ordinary
to delay equations of the same types become immediate. In §3 we
give three illustrative applications of our technique by deriving
some results in [7], [9], and [12] from the corresponding ones in
ordinary differential equations. Consequently we improve the results
in [9] by relaxing the upper bound restriction on q{t) and show that
for a bounded delay Equation (1) and the corresponding ordinary
equation

( 2 ) χi*\t) + /(ί, a?) = 0

have the same oscillatory behavior.

2* Main results* We need the following two lemmas; the first
one is essentially Kiguradze's lemma [6]. For a proof, see [10].

LEMMA 1. Suppose x(t) is a solution of (1) which is of constant
sign on [t0, oo), t0 ^ 0. Then there exists tx >̂ t0 such that on [tlf ©o)
we have

( i ) x{k)(t)x(t) > 0 whenever k + n is odd and 0 <| k ^ n — 1,
and

(ii) there exists an integer I, 0 ̂  I ̂  n ~ 1, n ~\- I is odd, such
that x{k\t)x{t) > 0 for k = 0, 1, , I, (-l)n+k-ιx[k\t)x{t) > 0 for k =
I + 1, , n - 1, and x{n\t)x(t) ^ 0.

LEMMA 2. Suppose q and f satisfy Hypothesis (E). If the
differential inequality

(3) z'(t)-f(t,z(q(t)))^O

has a positive solution on [a, oo)9 for some a > 0, so does the equa-
tion

(4) z'(t) - f(t, z(q(t))) = 0 .

Proof. Let z(t) be a positive solution of (3) on [a, °o). Choose
ίx ^ a so that q(t) :> a for t :> t^ Then z(t) satisfies the inequality

z(t) ^ z(td + Γ f(u, z(q(u)))du .

Let
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t ^ a and

(5) Vn(t) = z(t) for ί 6 [ α , t j

/(^, V*-i(Q(u)))du for ί ^ ίj

and n = 2, 3,
It follows from the definition of y% and (5) that the sequence

{yn} satisfies the property that z(t) = ^(ί) ^ #2(ί) ̂  :> zfa) for all
t ^ ί1# Hence {#„} converges pointwise to a function y(t) where z(t) ^
3/(ί) ̂  «(ίx) for all t ^ ίx. Let /Λ(ί) - /(ί, y,(g(t))), w = 1, 2, . Then
/i(t) ^ /2(*) ̂  ^ 0. Since fx is integrable on [tu t] for any t^tλ

and lim^oo/^tt) = /(u, y(g(u))) for any 06 e [tlt t], then, by the monotone
convergence theorem, we have

y(f) = «(«!) + Γ f(u, y(q(u)))du for ί ^ t, .
J*i

Hence τ/(ί) satisfies (4) and the proof is complete.
In connection with the study of solutions of Equation (1), we

consider solutions of the equation

( 6 ) x«\t) + /*(t, x(q(t))) = 0

where / * is defined by

/*(«, a?) = /(ί, x) if ^ 0

= -/(ί, -x) if x ^ 0 .

It is clear from the definition of / * that /*(*, —x) = —f*(t, x) and
that α?/*(ί, a?) > 0 if x Φ 0. Also, if &(£) is a solution of (6), so is
— x(t); furthermore, y(t) < 0 is a solution of (6) if and only if y(t)
is a solution of (1).

THEOREM 1. Suppose q is continuously differentiable on [a, ^ ) ,
a ^ 0, and q\t) > 0.

If, for n even, Equation (1) has a nonoscillatory solution, then
the equation

dsn q\q ι(β))

has a nonoscillatory solution.
If, for n odd, Equation (1) has an unbounded nonoscillatory

solution, so does Equation (7).

Proof. Let x(t) be a nonoscillatory solution of (1) and assume
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x(t) > 0 for t ^ t0, t0 ^ 0. By Lemma 1, there exists t± ̂  tQ and an
integer I, 0 ̂  I ̂  n - 1, w + Z is odd, such that x{k)(t) > 0, k =
0, 1, , Z, (-l)Λ + f c-^ ( f c )(ί) > 0, A = I + 1, , n - 1, and x{n)(t) ^ 0
for t >̂ t1# Thus, if w is even, or -̂  is odd and x(t) is unbounded,
then I ̂ > 1. Choose t ^ a and ί2 ^ ί2 so that <?(£) ^ ί2 for t^t2 and
integrate (1) from s to r, r ^ s ^ ί2, to obtain

[ f(u, x(q(u)))du = 0
Jβ

and hence

a-c-i)^) ^ I / ( ^ χ{q{n)))dn for all s ^ ί2

Let F = g(w); then the above inequality yields

s< -»(8) ̂  Γ
Jq(s)

Since ^(ί) ^ ί, then

( 8 ) *<•-»(*)

Define

[/(g(), ()W(9W)] , ^ t2 .
q(s

And

J" , i = 2, 3, , n - I .

Then it follows from (8) that the operators Fif ί = 1, , n — I are
well-defined and that Ftx(t) ^ Fty(t)9 i = 1, , n — Z, whenever

^ 2/(t) and ί ^ ί2. Furthermore, ^^(ί) > 0 and

( 9 ) ^-FMt) - -Ft-Mt) , t^t2 a n d i = 2, -, n - ί .

Thus (8) reduces to

By successive integrations of this inequality from s to r, r ^ s ^ ί2,
discarding positive terms, we obtain

(~l)ί+1x(%-i}(s) ^ ί>(s) , β ̂  t2 and ΐ = 1, -, n - I .

In particular,

(10) x«K*) ^ Fn-ιx(8) , s ^ ί 2 .
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If we let Tox(t) = FΛ^x(t) and

TMt) = Γ Ti^x&ds , ί ^ ί2 and i = 1, , I ,
J*2

then T^OO ̂  T
t
y(t)

9
 i = 1, , Z, whenever #(£) ̂ #(£) and £ ̂  t

2
.

Furthermore, TMt) > 0 and

(11) —TMt) = Γ<-i«(ί) , ί ^ «t and i = 1, . , I .

By successive integrations of (10) from t2 to s, discarding positive
constants, we obtain

a^-^s) ^ 2X8) , s ^ ί2 and i = 0, 1, , ί - 1 .

In particular,

S'(β) ^ ^ . ^ ( β ) , 8 ^ ί2 .

By Lemma 2, the equation cc'(s) = Γ^^ίs) has a positive solution
2/(s) on [ί2, oo) such that y'(s) > 0 for all s ^ ί2- By successive
differentiations of the equation y\s) = Tι^y(s) using (9) and (11), we
obtain

?/
α)
(s) - T

o
y(8) = F

n

and hence

= Γ [/(<Γι(v), V(v))/q'(q-\v))]dv .
Js

Thus 2/(s) satisfies Equation (7). If n is odd, then y"(β) > 0 and
hence y(s) is unbounded.

Now, assume x(t) < 0 for t ^ tQ and let %(<) = —x(t); then w(ΐ)
is a positive solution of Equation (6) which is unbounded if n is
odd and x{t) is unbounded. By the conclusion above, the equation

(12) y{n) + [llq'(q-ι(8))]f*(q-\8), y) = 0

has a positive solution t (s). Let y(s) = — v(β); then /̂(s) is a solution
of (12) and hence of (7) and which is unbounded when n is odd. The
proof is now complete.

The following theorem is an extension of [9, Theorems 6 and
15] to Equation (1). The result we obtain is essentially a comparison
result between Equation (1) and the delay equation

(13) «( }(ί)+/(ί,α(Q(ί))) = 0

where Q: R+ —> R is continuous, Q(t) ^ t for t ^ 0, and Q(t) -» c>o as
t —> co. The purpose of this extension is, on one hand, to relax the
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conditions of smoothness and monotonicity on q(t) and, on the other
hand, to show that for a bounded delay Equation (1) and Equation
(2) have the same oscillatory behavior.

THEOREM 2. Suppose q(t) ^Q(t), £ ;> 0.

If, for n even, Equation (1) has nonoscillatory solution, so does
Equation (13).

If, for n odd, Equation (1) has an unbounded nonoscillatory solu-
tion, so does Equation (13).

Proof. Let x(t) be a nonoscillatory solution of (1) and assume
x{t) > 0 for t ^ t0, tQ ^ 0. It follows as in the proof of Theorem 1
that there exists t2 ^ t0 such that

x { n - 1 ] ( s ) ^ [ f ( u , x ( q ( u ) ) ) d u , s ^ t 2 .

Define the sequence of operators F^x, q) and T^x, q) respectively by

F1(x,q)(t) = J" f(u, x(q(u)))du

Ft(x, q)(t) = £ FUx, q)(u)du , i - 2, -, n - I ,

and

T0(x, q)(t) = FnUx, q)(f)

Ttix, q){t) = Γ T^x, q)(u)du , i = 1, , I .

It is clear that these functions satisfy the differentiation properties
of (9) and (11) as well as the monotonicity property in both argu-
ments x and q. Hence, by successive integrations as in the proof
of Theorem 1, we obtain

x\t) ^ 2W&, q)(fi) , t ^ ί2 .

Since q(t) ^ Q(ΐ), then x\t) ^ T^(xf Q)(t) and hence, by Lemma 2,
the equation

x\t) - Γ,.^, Q)(t)

has a nonoscillatory solution y(t) which is unbounded when n is odd.
By successive differentiations of the equation y'(t) = Tι_γ(y, Q)(t), we
conclude that y(t) satisfies Equation (13).

Now, if we assume x(t) < 0 for t ^ t0, then the equation

(14) xw(t) + /*(«, a?(Q(ί))) - 0
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has a positive solution v(t) which is unbounded when n is odd and
x(t) is unbounded. Hence y(t) = — v(t) is a solution of (14) which
satisfies (13). The proof is now complete.

Results similar to Theorem 2 have also been obtained in [5] and

THEOREM 3. Suppose q(t) ^ Q(t), Q is continuously differentiable,
and Q'(t) > 0 for t ^ a, a ^ 0.

If, for n even, the equation

is oscillatory, so is Equation (1).
If, for n odd, Equation (15) has no bounded nonoscillatory solu-

tions, neither does Equation (1).

Proof. It follows from Theorems 1 and 2.

COROLLARY. Suppose ct <* q(t) <̂  t for some ce(0, 1].

If, for n even, the equation

(16) xw + o ~ι/(ί, x) = 0

is oscillatory, so is Equation (1).

If, for n odd, Equation (16) has no bounded nonoscillatory solu-
tions, neither does Equation (1).

Proof Take Q(t) = ct and set s = Q(t) and y(s) = x(t) in (15).
Then dny/dsn = l/cn dnx/dtn and hence (15) reduces to (16).

If we let r(t) = t — q(t), then Equation (1) may be written as

(17) x^\t) + f(t, x(t - τ(ί))) = 0 .

The following result is concerned with bounded delays.

THEOREM 4. Suppose τ(t) is bounded. Then, for n even, Equa-
tion (17) is oscillatory if and only if Equation (2) is oscillatory.
For n odd, every nonoscillatory solution of (17) is bounded if and
only if every nonoscillatory solution of (2) is bounded.

Proof. Suppose τ{t) ̂  M for some M > 0. Let Q(t) = t - M,
s = Q(t), and y(s) = x(t); then t ^ q(t) ^ Q(t) and dny/dsn = dnx/dtn.
Hence, the result follows from Theorems 2 and 3.
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REMARK. For n odd, the terminology "strongly decreasing" has
been used in [8, 9] to describe a solution x(t) of (1) which satisfies
(—lfx{k){t) > 0, k = 0, 1, , n — 1. It is then obvious that a non-
oscillatory solution x(t) of (1) is strongly decreasing if and only if
it is bounded.

Brands [2] obtained Theorem 4 for n = 2.

3* Applications*
(a) We first consider the nonlinear delay equation

(18) &<•>(«) + α(ί)/(s(?(t))) - 0

where n ^ 2, % is even, α is continuous with a{t) ^ 0, / is con-
tinuously differentiate with f\x) ^ 0, and xf(x) > 0 if x Φ 0.

Kamenev [4] gave the following oscillation criterion for Equa-
tion (18) when q(t) = ί.

THEOREM A. Suppose there exists a nondecreasing continuously
differentiable function φ: (0, oo) —• (0, oo) such that

( i ) j ±O° [̂ (| x \ί/n-χ)f(x)γ-1dx < oo and

(ii) Γ [t%-χa(t)lφ(t)\dt = oo.

Then the equation x(n) + a(t)f(x) = 0 is oscillatory.

This result has been generalized by Kusano and Onose [7] to
Equation (18) for any q{t) ^ t with q\t) ^ 0 . We show below that
their generalization follows from Theorem 3. Indeed, by Theorem 3,
Equation (18) is oscillatory if the corresponding ordinary equation

(19) ^ + [a(q-Xs)W(q-\s))Mx) = 0
dsn

is oscillatory. By Theorem A, Equation (19) is oscillatory if condi-
tions

( i ) and

(ii)'

are satisfied. If we now let s = q(t), then (ii)' reduces to

(ii)"

Thus (i) and (ii)" imply that Equation (19) and hence Equation (18)
are oscillatory. This is precisely the result obtained in [7]. How-
ever, Theorem 3 requires that q\t) > 0 while the condition on q(t)
in [7] is (?'(ΐ) ^ 0. This difference is insignificant especially when
oscillation is described by divergent integrals such as the one in
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(ii)". We show below that our result which is obtained for q\t) > 0
extends easily to the case q'{t) ^ 0. To see this, we assume that
q\t) ^ 0 and that (i) and (ii)" are satisfied. We let qβ) =
(1 — e~t)ι/n'"Lq{t) and consider the equation

(20) &<•>(«) + a(t)f(x(qi(t))) = 0 .

It is clear that qx(t) <* q(t), q^t) —> oo as t -> oo, and q[(t) > 0. Hence,
by Theorem 2, oscillation of Equation (18) follows from oscillation
of Equation (20). Since q&t) > 0, then, by the above result, Equa-
tion (20) is oscillatory if (i) and

(ii)'" ^[qΓ\t)a{t)lφ{qi{t))]dt = oo

are satisfied. It remains only to show that (ii)" implies (ii)'". Since
φ is nondecreasing, then φiq^t)) ^ φ(q(t)). From the definition of
?i(ί) we have eventually qΓ\t) ^ qn~\t)/2 and hence qΓ\t)a{t)lφ{qx{t)) ^
q*~\t)a(t)l[2φ(q(t))\. Thus (ii)" implies (ii)'" and the proof is complete.

(b) We now consider the linear delay equation

(21) xι*\t) + a(t)x(q(t)) = 0

where n ^ 2, n is odd, a is continuous with a(t) ^ 0, and q(t) satisfies
the hypothesis of Theorem 3.

In [1] G. V. Aman'eva and V. I. Balaganskii gave a sufficient
condition for the nonoscillatory solutions of Equation (21) to be
bounded when q(t) = t. This result has been extended by Lovelady
[8] so that the combined results state as follows

THEOREM B. / /

. ( i ) Γ tn-2a(t)dt = oo

or (i) fails and the second order equation

w"{t) + _ i _ ( Γ (β - ty-*q{s)ds)w(t) = 0
(n — 3)! \J* /

is oscillatory, then every nonoscillatory solution of Equation (21) is
bounded when q(t) = t.

Recently Lovelady [9] generalized Theorem B to Equation (21)
for any q(t) <̂  t provided q'(t) ^ 0 and either q'(t) ^ 1 or q(t) — q(s) ^
t — s. We will show that his generalization follows immediately from
Theorem 3 without the upper bound restriction on q{t) or its deriva-
tive. Indeed, by Theorem 3, boundedness of the nonoscillatory
solutions of Equation (21) follows from the boundedness of the non-
oscillatory solution of the ordinary equation
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(22) £ ? + [a(Q-K8))/Q\Q-\8))]x = 0 .
Cί8n

By Theorem B, every nonoscillatory solution of Equation (22) is
bounded if either

(23) Γ [sn-2a(Q-\s))/Q\Q-\s))]ds = oo
Jo

or (23) fails and the second order equation

(24) f i + _ i _ ( Γ [ ( M - β)—α(Q-ι(*))/Q'(Q-ι(t*))]dΛ - 0

is oscillatory.

If we let s = Q(ί), then (23) and (24) reduce respectively to

(25) Γ Qn-\t)a(t)dt = oo

and

(26) + Qfl> Λ [ ( u __ Q(ί))-^(Q-1(u))/Q'(Q"1(u))]^)^ - 0 .
(n — 3 ) ! \JQ(t)

Let v = Q"1^); then (26) reduces to

(27) [z'/Q\t)Y + , Q ^ L ( Γ [ Q ^ ~ Q(t)]*-*a(v)dv)z = 0 .
(n — 3)! \J* /

Thus either condition (25) or the oscillation of Equation (27) when
(25) fails implies that every nonoscillatory solution of Equation (21)
is bounded. This is [9, Theorem 16] obtained in the form of [9,
Corollary 3] without the condition q'(t) <; 1 required in [9].

(b) Finally, we consider the second order delay equation

(28) s"(ί) + a(t)x(q(t)) = 0

where a(t) is continuous with α(<) ̂  0.
In [12] Wong obtained the following oscillation result

THEOREM C. If ct <L q(t) <; t for some c e (0, 1] and if a{t) ^
(1 + ε)/(4cί2), then Equation (28) is oscillatory.

We observe that for c = 1, Theorem C reduces to a well-known
condition for oscillation of the ordinary equation

%" + affix = 0 .
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Thus, as a corresponding result for delay equations, Theorem G can
be obtained immediately from Theorem 3. In fact, by the Corollary
of Theorem 3, Equation (28) is oscillatory if the ordinary equation

x" + ca(t)x = 0

is oscillatory. But Equation (29) is oscillatory if ca(t) ^ (1 + ε)/(4ί2).
Hence Theorem C follows.
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