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YOSHIOMI NAKAGAMI AND COLIN SUTHERLAND

We extend Takesaki's duality to regular extensions, and
hence twisted crossed products, of von Neumann algebras
by locally compact groups.

Introduction. For a von Neumann algebra M, ε denotes the
canonical map of the automorphism group Aut(ikf) of M to the quotient
Aut(Λf)/Int(Af) = Out(ikf) of Aut(M) by the normal subgroup of inner
automorphisms. When M* is separable, and G is a separable locally
compact group (always endowed with a right Haar measure and
modular function Δ), we can associate to certain Borel mappings
a{m): 11-> at e Aut(Λf) with t\-*e(at) a homomorphism, a family of ex-
tensions of M by G, known as regular extensions, or, in special cases,
twisted crossed products, [7, 10, 12, 13, 15]. Indeed, since ε(a8)e(at) =
e(ast) there is a Borel family (s, t) e G x G ι-> u(s, t) e M of unitaries
such that

ί oc8oat = Ad u(s, t)oast

((or (α (x) ήoa = Ad uo(c (x) δ)<>a)

where δ is the isomorphism of L°°(G) into LΓ(G) (x) L°°(G) determined
by (δ/)(«, ί) = f(st), f e L°°(G); a: M-+M®L~(G) is given by (α(α?))(ί) -
αt(α?), x e l and (wf)(β, ί) = %(s, ί ) ί 0 , 0 for f e Sίf (x) L2(G) (g)L2(G)
(where M acts on , ^ 7 ) .

Since 11-> ε^^) is a homomorphism, we see

αr(w(s, t))u(r, st) = fu(r, s, t)u(r, s)u(rs, t)

for some Borel map fu:G x G x G—> M with unitary values in the
center of M. Also, /„ is a 3-cocycle for the natural action of G on
the center of M. If fu cobounds, we may assume, by modifying by
unitaries in the center of M, that

( 2 ) ar(u(s, t))u(r, st) = u(r, s)u(rs, t)

on G x G x G. Hence we may construct the regular extension
M®a,uG of M by G, as the von Neumann algebra on
generated by the operators

= at(x)ζ(t) , (λ (r)f)(t) Ξ u(

for ίceikf, r e G and f e £tf (x) L2(G). (See [13, Theorem 3.1.6] for
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further details on regular extensions and the significance of fu

cobounding.)
In order to formulate Takesaki's duality for a general locally

compact group, we introduce the concept of a dual action of G on
a von Neumann algebra N; this is an isomorphism β of N into
N®R(G) satisfying

where R(G) is the von Neumann algebra generated by the right
regular representation λ of G and 7 is the isomorphism of R(G) into
R(G) (x) R(G) determined by 7(λ(ί)) = λ(ί) (x) λ(ί), t e G. The crossed
dual product JV by G, N ®^ G, is the von Neumann algebra generated
by β(N) and 1 (g) L°°(G), [3, 6, 8, 9, 11, 14]. Our main result, Theorem
2 extends Takesaki's duality to regular extensions, thus answering a
question raised in [13, §1],

Duality for regular extensions. Before beginning our discussion,
we define unitaries U, V, V and W on L\G) (x) L\G) by

, {Uξ){s, t) = f(t, 8) , (Vξ)(8, t) = ξ(8t, t) , (F'f)(8, *) = A{tγ'*ζ{t-% t) ,

and W = UVU, so (Wζ)(8, t) = ξ(s, ts). Note that AdU is the symmetry
σ:x®y^y<g)x,δf = AdV(f (x) 1G), f e L~(G), and

LEMMA 1. // α is defined on M<ξξ)ayUG by

iί is α duαi action of G on

Proof. Direct computations easily show

ί Ad 1 (x) TΓ

(Ad 1 ® TΓ*(λ (r) (g) 1G) - λ*(r) (g) λ(r) .

The identity (ά(g) 0O($ = (^(g)7)°α now follows trivially on the gen-
erators of Λf®α>tt(?, and hence on all of M®atUG.

Following [6, 8], we say that actions1 a3' of a group G on von
Neumann algebras Mh j = 1, 2 are equivalent if

1 An action α of G on ikf means a homomorphism of G into Aut(ikf) such that
ί l-> cet(x) is σ-weakly continuous for each x£M.
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for some isomorphism p of Mx onto M2; we denote this relation by
{M19 a1} ~ {M2, a2}.

THEOREM 2. Let a = Ad 1 (x) F'°(/ (x) σ)oAd %*<>(« (x) 4 and

α(») Ξ= Ad 1 (x) l f f (x)V\x <g> lff) fa? e (M® G)®G) ,

so that a is the action2 of G on (M (g>a>u G) <&t G dual to a. Then
a is an action of G on M® B(L\G)) and we have

M® G) ® G, a\ ~ {M®B(L\G))f a) .

Proof. We note first that the operators a(x), x e M, λu(r), r e G
and l(g)/, /eL°°(G) generate M®B(L\G)). Indeed, if N is the von
Neumann algebra generated by the above operators, then i
L°°(G). If xeN'f then for all yeM we see that

at(y)x(t)ξ(t) = (a(y)xζ)(t) = (xa(y)ξ)(t) = x(t)at(y)£(fi)

a.e. on G, so that x(ί) 6 Mr a.e. Since also λu(r)x = xXu(r) for all
r G G, we obtain x(t)u{t, r) — u(t, r)x(tr) a.e. in t for each r e G. A
routine argument now shows α? e ΛΓ (g) l f f, and N = M® B(L2(G)).
Note that in fact we have shown that α(a?), x e l and 1 (x) LTO(G)
generate Mg)L°°(G).

Now define a map p: Λf(g) B{L\G)) -> Λf(g) B{L\G)) (x) B{L\G)) by
|t> = Ad 1 (x)F*oAd u*o( α (x) *). We have then

( = α(«) (X) l β

( 5 ) j

Of these, the last is trivial, the first follows from (1), and the second
is checked as follows. Since, from (2),

ast-i(u(t, r))u(st~\ tr) = u(st~\ t)u(s, r) ,

we have, for ξ e Si? (x) L\G) (x) L\G),

s, t)

-\ t)

"1, ίr)

= u(st~\ t)*att-i(u(t, r))u(st-\ tr)ξ(sr, tr)
2 a is an action oί G on M if and only if a is a normal isomorphism of M into

Jkf® L°°(G) with (a®c)oa = (c<g>δ)oa, [8, Theorem 2.1].
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= u(s, r)ξ(sr, tr)

= ((λ (r) (g) λ(r))f)(β, ί) .

Since, from (4), the right hand sides of (5) generate

p is an isomorphism of M<g>B{U{G)) onto {M <&a,u G) ®* G.
It remains to check the identity {p®t)°a = a°p. Notice that

a = Ad(l®V'UV)op, and that

(V'UVξ)(s, t) = Δ{tγ*ξ{s, r 's) , ((V'UV)*ζ)(s, t) = A(ts-ψ2ξ(s, si"1) .

Thus we obtain

(p (g) c)oά(a(x)) = (p® ί)<»Ad(l <g)V'UV)(a(x) ® l e )

(g) l σ (g) 1 G ,

and

do (g) ί)oα(λ»(r)) = (p ® ήoAά(l®VUV)(X%r) ® λ(r))

= λ (r) (8) λ(r) (g)

Also

(g) / ) = Ad (1 ( g ) F > ( ί (8) σ)oAd tt*(l (g) 1G (g) / )

= Ad (1 (g) F ' ) ( l <8> / <8> lβ) = 1 <8> * / ,

where (ιcf)(s, t) = /(t^s), by direct computation.
Finally, noticing that Ad V'(X(r) (x) 1G) = λ(r) (x) 1G, and that

AάV'(f ® 1G) = Λ:/, we obtain also

aop(a(x)) = a(x) (g)lG®lG ,

a°p(Xu(r)) — a(Xu(r) (x) λ(r))

= Ad(l (x) 1G (g) F')(λw(r) (x) λ(r) (x) l σ )

= λ w (r) (x) λ(r) (8) l β ,

and

β (8) / )
= Ad(l (g) 1G (g)F')(l ® l β (g) / (g)

the equality (p(g)c)°ά = a.op is verified.
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COROLLARY 3. If *λ(r) is defined on βίf' ® L\G) by

(uX(r)ξ)(s) = J(r)1/2u(r, r"1*)*^-1*) ,

then at = Ad *λ(ί)°(α( ® ί).

Proof. It suffices to show the indicated equality on the generators
a(x), λM(r) and 1 ® / of M ® B{L\G)). We compute

= Δ{t)ι>*u{t, t-'sYioίt (X) ί(α(x)) l i

= ιt(t, t-1β) α t(α l-i.(«))M(ί, r '

for f e J T ® L2(G) and

(α(α(a;))ί)(s) ί) = ((α(χ) ® lβ)ί)(s, t) - α.(aj) (g) lof (β, ί) ,

for ζ e £ίf 0 L\G) ® L2(G). Similarly, we have

(Ad λ(t)o(αt®«)(λ (r))ί)(β)

= J(t)ι/2u(t, t-ιs)*at(u(t-ιs, r))Cλ(ί)*|)(ί-1sr)

= u(t, t-'syatiuit-'s, r))u(t, t^isrMsr)

= u(s, r)ζ(sr) (by (2))

and

(Ad- λ(t)o(αf (g) 0(1 (X) /)f)(β) = (Ad" λ(ί)(l

= n{t, t-ιs)*f{t-ιs)u{t, t-ιs)ξ{s)

= f(t-'8)ξ(8)

for ξ<=βέr<g>L\G). Since

(dί(λ (r))ί)(βf ί) = ((λ (r) <8) lβ)ί)(β, ί)

and

s, t) - ((l ® /c

for I e Jg^ ® L2(G) ® L\G), the verification is complete.
This result is a partial clarification of [13, Proposition 2.1.3]

asserting that the 2-cocycle u ® lβ cobounds with respect to at ® ί
in iki(g)B(L2(G)). Indeed, it is trivially checked that

u(s, t) Θ l β = (α. <g) 0
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as required.
For a given action Θ of G on a von Neumann algebra N, we

write Nθ = {x e iV: #*(#) = α?, Vt 6 G}, the fixed point subalgebra of N.

COROLLARY 4. M®α,M G = (Λf <g) B{L\G)))\

Proof. Since ((Λf®MG)®*G)* = α(M®α,wG) by [8, Proposition
6.4], Takesaki's duality (Theorem 2) tells us that

aim® G) = p{{M®B{L\G))f) .

From (4) and (5), we see that a and p agree on M®α > t tG, so that
M®a,uG = {M®B{L\G))f as claimed.

Corollary 4 gives some information on when regular extensions
M<5$ai,uG and Λf®α2?vG of M by G, with εoα1 = εoα2, are iso-
morphic. For if α1 and α2 denote the actions of G on M = M®
B(L\G)) with fixed point algebras M®αi,tt G and Λf ®β2ιV G respectively,
then ii?®«iG and iί?®«2G will be isomorphic whenever there is a
Borel map teG r-*ut with a\ — Adutoά2

t and t6tαf(w.) = i ί̂s for t, seG,
[14]. On the other hand these crossed products are isomorphic res-
pectively to {M®^,UG)®B{L\G)) and (AΓφ^.G) <g> B(L\G)), [8].

Also, note that εoα1 = ε α2 whenever εoα:1 = εoα2, so it is necessary
only to provide conditions under which the "comparison cocycle"
O)«i,α2 associated to a1 and α2 is trivial, [13]. The hypothesis of the
next result are two situations in which this is known to happen,
[1, 4].

COROLLARY 5. Let Λf ®Λi,u G and M ®α2,v G 6e regular extensions
of M by G with εoα1 = εoα2. If either

(1) G is discrete, acts freely on the center of M, and is a
locally finite extension of a solvable group; or

(2) G is a compact, abelian and connected group K, or KxR,
and acts trivially on the center of M,
then (Λf ®βifW G) (x) B{L\G)) and (M®a2,υ G) (x) B(L\G)) are isomorphic.

Just as in the case of ordinary crossed products, regular extensions
may be characterized by the existence of a dual action and of a
distinguished family of unitaries.

THEOREM 6. Let N be a von Neumann algebra with N* separable
and β a dual action of G on N. Then the following two conditions
are equivalent:
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( i ) there is {M, a} with M* separable such that {N, β} ~
{M<ξ$atUG, a} for some u; and

(ii) there is a Borel map ί = G π v(t) e N with unitary values
such that β(v(t)) = v(t) (x) λ(ί), t e G.

The proof goes the same way as in the proof [5, 8, 11] except
the following lemma.

LEMMA 7. Assume the condition (ii) in Theorem 6. Then, N
is generated by Nβ Ξ= {ye N: β(y) = y (x) 1G) and v(t), teG.

Proof (Takesaki). Let N = i\Γ(x) F^ β = (c (x) σ)o(β (g) c) and v(t) =
#(£) (x) 1, where J ^ is a factor of type 1^. Then y§ is a dual action
of G on N, Nβ = Nβ ( g ) ^ is properly infinite and /3(v(t)) = v(t) (g) λ(ί)
for all £. Therefore iβ is dominant3, because β(v) = (v® lβ)(l(g)TΓ)
for a unitary v in N(g}L°°(G) defined by (vξ)(t) == v(t)ζ(t), [2,9].
Therefore there exists a strongly continuous unitary representation
u of G in JV such that β(u(t)) = %(t) ® λ(ί) by [5, 8,11]. In this case
N is generated by Nβ (g) JP^ and w(ί), ί e G. If e is a projection in
N of the form 1 ® ί9 with dim p = 1, then {iV, /S} is identified with
{Ne, β

e). Since ^(v(ί)) = v(t) (x) λ(t), ί e G, v(t)u{t)* e ΛΓ̂3 <g) ̂  and hence
= ew{t)u{t)e for some ^ (ί) e Nβ ® F^. Here we may assume that
= ew(t)at(e). So, ^(ί) is a partial isometry. If x is an arbitrary

element in Nβ ® F^, then

exu(t)e = exw(t)*w(t)u(t)e ~ exw(t)*v(t)

and hence e(Nβ (x) F^u{t)e = Nβv(t). It remains to show that
e(JV^(x)F^)u{t)e, teG generate βiSfe = iV. Since the set L of all finite
linear conbinations of xu(t) with x e Nβ ® F M and ί 6 G is a σ-weakly
dense *-subalgebra of JV, βLe is σ-weakly dense in eNe — N. Conse-
quently, Nβv(t), teG generate N.

Proof of Theorem 6. That (i) => (ii) has already verified in
Lemma 1.

(ii) => (i). Let M == Nβ. Since β(v(t)xv(t)*) = v(f)xv(jb)* (x) lσ for
xeM,v(t) normalizes M. Also with u(s, t) = v(s)v(t)v(st)*, we see
β(u(8, t)) = u(β, t) (g) l β , so M(S, ί ) e l for s,teG.

Set α8 Ξ Adv(s) |"Λf. Then asoat = Ad u(s, t)°ast and
ar(u(s, t))u{r, st) = u(t, s)u(rs, t). Then a and u determine a regular
extension M ®α,tt G of Jlί by G, with generators α(Λf) and λtt(s), SGG.
Define a unitary i; in N<g}L°°(G) by (v£)(t) = v(t)ξ(t). Then, by di-

3 A dual action β of (r on N is said to be dominant, if iV̂ 3 is properly infinite and

{iV, ,8} - {#, ^}, where i\T - N®B(L2(G)), β=(t® σ)o(ββ> ή and β = (Ad 1 (8)^) °^ . If

β is dominant, then {N, β} - {ΛΓ, /3} - {(Ng>d

B G)®$ G, β}.
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rect computation,

v*Xu(s)v = β(v(έ)) and v*a(x)v = β{x)

for seG and x e l . Thus v*(M®a,uG)v = /3(iN0 by Lemma 7.

According to the above theorem we know the relation between
[2, Theorem III. 3.1] and [5, Theorem].
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