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In this note we prove an anolog of of Amitsur’s theorem
for central polynomials.

THEOREM. Let F' be an infinite field, f(x) = f(x, ---,x,),

g(x) = g(®rsyy o+, %) two noncommutative polynomials in
disjoint sets of variables. Assume that f(z,---,2,)-
g(®%ys1y +++, %) is central but not an identity for F,. Then

both f(x) and g(x) are central polynomials for F,.

Note. Since [z, y]* is central for F, while [z, y] is not, the as-
sumption of disjointness of the variables cannot be removed.

Central polynomials that are not identities of the % X k& matrices
F, were constructed in [2], [3]. In [1] Amitsur proved the following
primeness property of the polynomial identities of F,:

THEOREM (Amitsur). Let F be an infinite field, flx)=
Sy, <, 2,), gx)=gla, ---, x,) twov noncommutative polynomials

over F. If f(x)-9(x) is an identity for F,, then either f(x) or g(x)
1s an tdentity for F,.

Proof of the theorem. Since F' is infinite, by standard argu-
ments we may assume it is algebraically closed. Hence every matrix
in F, is conjugate to its Jordan canonical form. We show (W.L.0.G.)

that f(«) is central. By assumption there are y, ---, ¥,€ F}, such
that

f(yl) ”'7 y'r)'g(y'rﬂﬂ, %y ys) = aI':iéo .

Denote A = 9(%,41, "+, ¥,), then det A = 0 since det al = 0, so that
A7l = Be F, exist. Thus deduce the identity

(1) f(yly"';yr):a<y1"°',y'r)'B

where a(y) is a scalar function on (F,)", not identically =zero.
Conjugate both sides of (1) by a matrix D¢ F, so that DBD™ is in
a Jordan canonical form. Since f(x) is a polynomial,

Dfy,y -+, y) D' = f(Dy, D, -+, Dy, D™") = f(Gy, *+, ¥,) -
By (1), Df(y)D™* = a(y)DBD™. Since
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(yl; Tty yr) = (-D_lng, ) D_lgrD> ’
we can write

a(?/l: ) yr) = c_r(glf Ty ?71') s

so we may finally assume in (1) that B is in its Jordan canonical
form:

B: & 0
(1) Fy - u) =aw, w0 B e
0 B

each ¢; = 0 or 1 and a(y) is a scalar funection on (F,)", not identical-
ly zero.

We proceed to show that all ¢, = 0, for example, that ¢, = 0.
Choose (¥, - -+, ¥.) = (¥) so that a(y)=0. Next, let S, be the Sym-
metric group on 1, ---, k. If pe S, and 4, denotes the matrix (0,.,;),
then it is well known that A;' exists and for any matrix (a, ;) € F},
A, AT = (@, ni)-

To show ¢, = 0, choose the transposition ¢ = (1, 2)e S, and con-
jugate (') by A,. Denoting y; = A,y;A;* we obtain the equation

B & B 0
(2 ) a{(y{y Sty y:') O 182. ) = a(yl? t Ty yr) 81 181'

Equating the (2, 1) entry on both sides we deduce that ¢, = 0.
Thus B in (1’) is diagonal. Since det B0, we have 8,,--+, 8, #0.
By equating the (1, 1) and the (2, 2) entries in (2) we get

a(y)B: = a(y)B:

a(y)B. = a(y)B,
and all terms are =0. Hence B, = *+£,. Similarly, B8, = =8,
2<41=<k We want to show that g, = ... =8,. If Char F =2,

we are already done. Assume therefore that Char F' == 2. Assume
for example that B, = —5,. Let

1 1 1 -1
0 1 0 1
H = 1 . Clearly H' = 1

1 1
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Write 2z, = Hy,H * and conjugate (1') (with B diagonal) by H to obtain

Bl —2/81
a(zy, -+, 2,)B=a(y, -, ¥,)|0 — B
0 .

.

0

This is contradiction since —2p8, % 0, hence the right hand side is
not diagonal while the left is.
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