Pacific Journal of Mathematics

A PRIMENESS PROPERTY FOR CENTRAL POLYNOMIALS

AMITAI REGEV

Vol. 83, No. 1 March 1979

A PRIMENESS PROPERTY FOR CENTRAL POLYNOMIALS

AMITAI REGEV

In this note we prove an anolog of of Amitsur's theorem for central polynomials.

THEOREM. Let F be an infinite field, $f(x)=f(x_1,\cdots,x_r)$, $g(x)=g(x_{r+1},\cdots,x_s)$ two noncommutative polynomials in disjoint sets of variables. Assume that $f(x_1,\cdots,x_r)\cdot g(x_{r+1},\cdots,x_s)$ is central but not an identity for F_k . Then both f(x) and g(x) are central polynomials for F_k .

Note. Since $[x, y]^2$ is central for F_2 while [x, y] is not, the assumption of disjointness of the variables cannot be removed.

Central polynomials that are not identities of the $k \times k$ matrices F_k were constructed in [2], [3]. In [1] Amitsur proved the following primeness property of the polynomial identities of F_k :

THEOREM (Amitsur). Let F be an infinite field, $f(x) = f(x_1, \dots, x_n)$, $g(x) = g(x_1, \dots, x_n)$ two noncommutative polynomials over F. If $f(x) \cdot g(x)$ is an identity for F_k , then either f(x) or g(x) is an identity for F_k .

Proof of the theorem. Since F is infinite, by standard arguments we may assume it is algebraically closed. Hence every matrix in F_k is conjugate to its Jordan canonical form. We show (W.L.O.G.) that f(x) is central. By assumption there are $y_1, \dots, y_s \in F_k$ such that

$$f(y_1, \dots, y_r) \cdot g(y_{r+1}, \dots, y_s) = \alpha I \neq 0$$
.

Denote $A=g(y_{r+1},\,\cdots,\,y_s)$, then $\det A\neq 0$ since $\det \alpha I\neq 0$, so that $A^{-1}=B\in F_k$ exist. Thus deduce the identity

$$f(y_1, \dots, y_r) = \alpha(y_1, \dots, y_r) \cdot B$$

where $\alpha(y)$ is a scalar function on $(F_k)^r$, not identically zero. Conjugate both sides of (1) by a matrix $D \in F_k$ so that DBD^{-1} is in a Jordan canonical form. Since f(x) is a polynomial,

$$Df(y_1, \dots, y_r)D^{-1} = f(Dy_1D^{-1}, \dots, Dy_rD^{-1}) = f(\bar{y}_1, \dots, \bar{y}_r)$$
.

By (1),
$$Df(y)D^{-1} = \alpha(y)DBD^{-1}$$
. Since

$$(y_1, \dots, y_r) = (D^{-1}\bar{y}_1D, \dots, D^{-1}\bar{y}_rD)$$

we can write

$$\alpha(y_1, \dots, y_r) = \overline{\alpha}(\overline{y}_1, \dots, \overline{y}_r)$$

so we may finally assume in (1) that B is in its Jordan canonical form:

each $\varepsilon_i = 0$ or 1 and $\alpha(y)$ is a scalar function on $(F_k)^r$, not identically zero.

We proceed to show that all $\varepsilon_i=0$, for example, that $\varepsilon_1=0$. Choose $(y_1,\cdots,y_r)=(y)$ so that $\alpha(y)\neq 0$. Next, let S_k be the Symmetric group on $1,\cdots,k$. If $\eta\in S_k$ and A_η denotes the matrix $(\delta_{\eta(i),j})$, then it is well known that A_η^{-1} exists and for any matrix $(a_{i,j})\in F_k$, $A_\eta(a_{i,j})A_\eta^{-1}=(a_{\eta(i),\eta(j)})$.

To show $\varepsilon_1 = 0$, choose the transposition $\sigma = (1, 2) \in S_k$ and conjugate (1') by A_{σ} . Denoting $y'_i = A_{\sigma} y_i A_{\sigma}^{-1}$ we obtain the equation

$$(2) \qquad \qquad lpha(y_{\scriptscriptstyle 1}',\; \cdots,\; y_{\scriptscriptstyle r}') egin{pmatrix} eta_{\scriptscriptstyle 1} & arepsilon_{\scriptscriptstyle 1} \ 0 & eta_{\scriptscriptstyle 2} \ & \ddots \end{pmatrix} = lpha(y_{\scriptscriptstyle 1},\; \cdots,\; y_{\scriptscriptstyle r}) egin{pmatrix} eta_{\scriptscriptstyle 2} & 0 \ arepsilon_{\scriptscriptstyle 1} & eta_{\scriptscriptstyle 1} \ & \ddots \end{pmatrix}.$$

Equating the (2, 1) entry on both sides we deduce that $\varepsilon_1 = 0$.

Thus B in (1') is diagonal. Since det $B \neq 0$, we have $\beta_1, \dots, \beta_k \neq 0$. By equating the (1, 1) and the (2, 2) entries in (2) we get

$$\alpha(y')\beta_1 = \alpha(y)\beta_2$$

$$\alpha(y')\beta_2 = \alpha(y)\beta_1$$

and all terms are $\neq 0$. Hence $\beta_2 = \pm \beta_1$. Similarly, $\beta_i = \pm \beta_1$, $2 \leq i \leq k$. We want to show that $\beta_1 = \cdots = \beta_k$. If Char F = 2, we are already done. Assume therefore that Char $F \neq 2$. Assume for example that $\beta_2 = -\beta_1$. Let

$$H = egin{pmatrix} 1 & 1 & & 0 \ 0 & 1 & & 0 \ & & 1 & & \ 0 & & \ddots & & \ \end{pmatrix}. \quad ext{Clearly } H^{-_1} = egin{pmatrix} 1 & -1 & & 0 \ 0 & 1 & & \ & & 1 \ & & & \ddots \ \end{pmatrix}.$$

Write $z_i = Hy_iH^{-1}$ and conjugate (1') (with B diagonal) by H to obtain

$$lpha(z_1,\ \cdots,\ z_r)B=lpha(y_1,\ \cdots,\ y_r)egin{pmatrix} eta_1 & -2eta_1 & 0 \ 0 & -eta_1 & 0 \ 0 & \ddots \end{pmatrix}.$$

This is contradiction since $-2\beta_1 \neq 0$, hence the right hand side is not diagonal while the left is.

REFERENCES

- 1. S. Amitsur, The T-ideal of the free ring, J. London Math. Soc., 30 (1955), 470-475.
- 2. E. Formanek, Central Polynomials for Matrix Rings, J. of Algebra, 23 (1972), 129-133.
- 3. Ju. P. Razmyslov, A Certain Problem of Kaplanski, Izv. Akad. Nauk. SSSR. Seri Mal., 37 (1973), 483-501.

Received August 9, 1978.

THE WEIZMANN INSTITUTE OF SCIENCE REHOVOT, ISRAEL

PACIFIC JOURNAL OF MATHEMATICS

EDITORS

DONALD BABBITT (Managing Editor)

University of California Los Angeles, California 90024

Hugo Rossi

University of Utah Salt Lake City, UT 84112

C.C. MOORE and ANDREW OGG

University of California Berkeley, CA 94720 J. Dugundji

Department of Mathematics University of Southern California Los Angeles, California 90007

R. Finn and J. Milgram

Stanford University Stanford, California 94305

ASSOCIATE EDITORS

E. F. BECKENBACH

B. H. NEUMANN

F. Wolf

K. Yoshida

SUPPORTING INSTITUTIONS

UNIVERSITY OF BRITISH COLUMBIA
CALIFORNIA INSTITUTE OF TECHNOLOGY
UNIVERSITY OF CALIFORNIA
MONTANA STATE UNIVERSITY
UNIVERSITY OF NEVADA, RENO
NEW MEXICO STATE UNIVERSITY
OREGON STATE UNIVERSITY
UNIVERSITY OF OREGON

UNIVERSITY OF SOUTHERN CALIFORNIA STANFORD UNIVERSITY UNIVERSITY OF HAWAII UNIVERSITY OF TOKYO UNIVERSITY OF UTAH WASHINGTON STATE UNIVERSITY UNIVERSITY OF WASHINGTON

Printed in Japan by International Academic Printing Co., Ltd., Tokyo, Japan

Pacific Journal of Mathematics

Vol. 83, No. 1 March, 1979

Richard Neal Ball, Topological lattice-ordered groups	1			
Stephen Berman, On the low-dimensional cohomology of some				
infinite-dimensional simple Lie algebras				
R. P. Boas and Gerald Thomas Cargo, <i>Level sets of derivatives</i>	37			
James K. Deveney and John Nelson Mordeson, Splitting and modularly				
perfect fields	45			
Robert Hugh Gilman and Ronald Mark Solomon, Finite groups with small unbalancing 2-components	55			
George Grätzer, Andras Hajnal and David C. Kelly, <i>Chain conditions in free</i>				
products of lattices with infinitary operations	107			
Benjamin Rigler Halpern, <i>Periodic points on tori</i>	117			
Dean G. Hoffman and David Anthony Klarner, Sets of integers closed under				
affine operators—the finite basis theorem				
Rudolf-Eberhard Hoffmann, <i>On the sobrification remainder</i> ${}^{s}X - X \dots$	145			
Gerald William Johnson and David Lee Skoug, Scale-invariant				
measurability in Wiener space	157			
Michael Keisler, Integral representation for elements of the dual of $ba(S, \Sigma)$	177			
Wayne C. Bell and Michael Keisler, A characterization of the representable				
Lebesgue decomposition projections	185			
Wadi Mahfoud, Comparison theorems for delay differential equations	187			
R. Daniel Mauldin, <i>The set of continuous nowhere differentiable</i>				
functions	199			
Robert Wilmer Miller and Mark Lawrence Teply, <i>The descending chain</i>				
condition relative to a torsion theory	207			
Yoshiomi Nakagami and Colin Eric Sutherland, Takesaki's duality for				
regular extensions of von Neumann algebras	221			
William Otis Nowell, Tubular neighborhoods of Hilbert cube manifolds	231			
Mohan S. Putcha, Generalization of Lentin's theory of principal solutions of				
word equations in free semigroups to free product of copies of positive	250			
reals under addition	253			
Amitai Regev, A primeness property for central polynomials	269			
Saburou Saitoh, The Rudin kernels on an arbitrary domain	273			
Heinrich Steinlein, Some abstract generalizations of the	•			
Liusternik-Schnirelmann-Rorsuk covering theorem	285			