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W. Hayman [On Nevanlinna's second theorem and exten-
sions, Rend. Circ. Mat. Palermo, Ser. II, II (1953).] has
given sufficient conditions on a function, /, of bounded
characteristic in the unit disc, in order that / ' also have
bounded characteristic. In this paper it is shown that one
of these conditions is also necessary for the conclusion of
the theorem to hold.

Let U be the open unit disc in the complex plane and let T be
its boundary. It is well known that there are functions /, that are
bounded and holomorphic in U, such that f'gN(U). Here N(U) is
the Nevanlinna class. In fact, 0. Frostman, [1, Theoreme IX], has
shown that there are Blaschke products with some degree of "smooth-
ness" whose derivatives fail to lie in N(U). More precisely, he
shows that there is a Blaschke product B, whose zeros {an} satisfy
the condition,

| y < c o , for all a >±. ,
2

but B'ίN(U). In Frostman's example, every point of T is a limit
point of the sequence {an}.

W. Hayman, [2, Theorem IV], has proved a result in the positive
direction. A function /, that is holomorphic in a bounded domain D,
is said to be of order K if, for every complex number α, the number
of solutions of the equation, f(z) = α, that are at a distance of at
least ε from the boundary of D is at most Cε~κ, for some constant
C. C may depend on a but not on ε. We say / has finite order if
it has order K for some K. Now let D be a bounded open set such
that U Q D, and let D Π T = \Jn Inf where In = {ei0: an < θ < βn}.

THEOREM A (Hayman). Suppose that

( i ) (a) Σ (βn - a J = 2ττ
(b) Σ (βn - an) log l/(β% _ α J < - .
(ii) there are constants ε, C > 0 such that if an < θ < βn, then

Λ dD) ^ e(\θ - an\\θ - βn\)c .

(iii) / is holomorphic and of finite order in D and feN(U).
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Then Γk)eN(U) for ft = 1, 2, 8, .

The conditions (i)(a) and (i)(b) just mean that the set E - T\\Jn In

is what is usually called a Carleson set.
In [4], P. Kennedy investigates the necessity of condition (i)(b).

He shows that if (i)(a) holds but

then there is a bounded open set D^Usuch that Z) Π T = JJ»In, In =
{eΐ0: an < θ < βn), and a function / that is bounded and holomorphic
in D such that f'$N(U). He observes that condition (*) does not
follow from the condition

Σ ( A - α ) l o g — - co ,

and writes that "there is still a gap between the positive information
given by Hayman's theorem and the negative information" given by
his example.

In this note we close the gap by showing that condition (i)(b)
is the right one. Our example is a Blaschke product that retains
the same degree of smoothness as the one of Frostman's example.

THEOREM. TO each sequence of arcs {In}, In — {eiθ: an < θ < βn),
that satisfies (i)(a) but not (i)(b), there corresponds a Blaschke product,
B, whose zero sequence, {an}, clusters only on T\\Jn In, such that
B' £ N(U) and Σ (1 ~ \an\)a < °° for all a > l/2 Moreover, there is
a bounded open set D, such that D^U, Df]T = \J»In, D satisfies
condition (i)(c) with C = 2, and B extends to be bounded and of order
1 in D.

Proof Let εn = βn — an. We are assuming that Σ * εn log (1/εJ =
cχ3. We may choose numbers δn, 0 < δn < 1, such that limΛ ^ δn — 0,
and ^Σjnδnεnlogl/εn = oo, Now define dn = εl~δn and cn = (1 — dn)eίan

and 7n = (1 — dn)eiβn. Let B be the Blascke product whose zeros are
K} U {7»}. The zeros of B cluster only on the set E = T\\Jn In so
B is holomorphic on In for every n. We calculate that

£> \Z) = ^{Zji^ Γ~̂  ~~Z "T" 2-i ! —z f

so that when eiθ e In we get
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If B' were in N(U) it would follow that
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Now,

\ei9 -

^ d* + (0 - α J

and hence

I oi0 — o |2 ~ dl + (θ - aj

If ei0 e /„ then

log+(Σ * " |Cfe l,2) έ log ( Σ T V 1 ^

^ log
c "[ , ^ log

di + (0 -

So we see that

ck\

d +ei

Since δM < 1, we see t h a t dn = ε^~5>ί ^ eΛ (assuming εn < 1), so

X I JL I ς

log-

Hence,

Σ ( l o g + J Σ l

ί0

 lCkl ^ 2π log i . + Σ δnεn log A = oo .
2 sw

So B'ίN(U). Also we see that

Σ (1 - I «• l)β = 2 Σ # = Σ ei2-5 ϊβ <

if a > 1/2 because (2 — δn)a ^ 1 for all sufficiently large n.
It remains to construct the domain D. We have the inequality,
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\B(rei0)\2 >1 v / [ - -rη Σ

re" - —1 I'

(We may assume \ck\ ^ 1/2, | 7* | ^ 1/2.)

Now suppose α Λ ^ θ ^ (α n + jSM)/2 and | z | ^ 1, t h e n

So,

I reιa — e ί α " |

^ 1/4 if

1 - r 2 ^ . 3

Σd -

re 1" —

SΊ

Note that C is independent of θ and n. Similarly we see that if
(an + βn)/2 Sθ^βn and

\rei0 - e^«|2 ~ 16 Σ (1 - Io*j ) + Σ (1 - ίΎfcI
2)

A;

then | S ( r O I 2 ^ 1/4. We may calculate that, for C > 0,

< Cl = {rei0: \ re" - ρeiλ \ > 1 - p] ,

where p - C/(l + C).
So, if

A - {r*w: r ^ 1, an rei - p
and |re<tf - peiβ*\ > 1 - p) and J - U. A , then

^ 1/2, 2 6 i .

Now for |z | > 1, B(z) = 1/5(1/2), so |5(2)| ^ 2 if 1/2 6 4. Assuming,
as we may, that C < 1, we see that ΓΛ = {z: 1/2 6 4} = {s: M ^ 1>
2 + δe<αw| < 1 + 8 and |2 + δeiβ»\ < 1 + δ}, where δ - C/(l - C).

Finally, if we let & = ί7 U U% Λ* then ^ is an open set and | B{z) \ ̂  2
for 2 G Λ

Now we define a function

' - an)\θ - βnγ if an<θ <βn for some w

0 otherwise .

We check that ψ\θ) exists for all θ and that there is a constant K
such that
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(See [4, Lemma 1J for a similar calculation.) For ε > 0 we define
Dε = {re": r < e^ί0)}. Then Dε satisfies condition (ii). of Theorem A
with C = 2. (Again, see [4, Lemma 2], for a similar calculation.)
Also, it is not hard to that DB £ 6? for all sufficiently small ε > 0.
So we fix some ε > 0 such that Zλ Q έ? and let D = Zλ. Since D £
^ , 5 is bounded in Zλ It remains to show that B has order 1 in Zλ
Let φ:D-^U be a conformal map. Since ^' satisfies a Lipschitz
condition it follows from a theorem of Kellogg [3], that φ' extends
to be continuous and nonvanishing on D. From this we can conclude
that there is a 8 > 0 such that 1 - | φ{z) | ^ 8 dist (s, 3D) for all zeD.
Fix aeC and let / = B — α and let {α%} be the zero sequence of /.
Then {φ(an)} is the zero sequence of the bounded function f°φ~ι so
Σn (1 — 19(01) < °° a n d hence Σ» dist(αn, 3D) < oo. From this we
may conclude that B has order 1 in D.

As a final remark we point out that we may choose the arcs In

in such a way that E = T\]Jn In is a countable set with only one
limit point, and such that (i)(b) fails. If we apply the theorem to
this situation we get a Blaschke product B whose zeros converge to
a single point such that B'$N(U), while the zeros sequence, {αΛ},
satisfies Σ ( l - KD" < °° for all a > 1/2.
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