Pacific Journal of Mathematics

LONG WALKS IN THE PLANE WITH FEW COLLINEAR POINTS

JOSEPH LEONIDE GERVER

Vol. 83, No. 2

April 1979

LONG WALKS IN THE PLANE WITH FEW COLLINEAR POINTS

JOSEPH L. GERVER

Let S be a set of vectors in \mathbb{R}^n . An S-walk is any (finite or infinite) sequence $\{z_i\}$ of vectors in \mathbb{R}^n such that $z_{i+1}-z_i \in S$ for all *i*. We will show that if the elements of S do not all lie on the same line through the origin, then for each integer $K \geq 2$, there exists an S-walk $W_{\mathbb{K}} = \{z_i\}_{i=1}^{N(K)}$ such that no K+1 elements of $W_{\mathbb{K}}$ are collinear and N(K)grows faster than any polynomial function of K.

Specifically, we will prove that

$$\log_2 N(K) > \frac{1}{9} (\log_2 K - 1)^2 - \frac{1}{6} (\log_2 K - 1)$$
.

We will then show that if the elements of S lie on at least L distinct lines through the origin, then there exists an S-walk of length N(K, L) with no K+1 elements collinear, such that $N(K, L) \ge (1/4)L^*N(K-1)$, where $L-2 \le L^* \le L+1$ and $L^* \equiv 0 \mod 4$. In [3] it was shown that if $S \subset Z^2$, and for all $s \in S$ we have $||s|| \le M$, then there does not exist an S-walk $W = \{z_i\}_{i=1}^{N(K,M)}$ such that no K+1 elements of W are collinear and

$$\log_2 N(K, M) > 2^{13}M^4K^4 + \log_2 K$$
.

Before proving these theorems we introduce some notation. If $A = (a_1, \dots, a_n)$ and $B = (b_1, \dots, b_m)$ are ordered sets of vectors, we let $RA = (a_n, \dots, a_1)$ and we let $(A, B) = (a_1, \dots, a_n, b_1, \dots, b_m)$. We let 2A = (A, A) and, for every positive integer k, we let (k+1)A = (kA, A). If J is a vector operator, we let $JA = (Ja_1, \dots, Ja_n)$.

THEOREM 1. Let S contain two vectors independent over R, and let K be an integer greater than or exual to 2. There exists an S-walk $W_{\kappa} = \{z_{p}\}_{p=1}^{N(K)}$ such that no K + 1 elements of W_{κ} are collinear and such that

$$\log_2 N(K) > \frac{1}{9} (\log_2 K - 1)^2 - \frac{1}{6} (\log_2 K - 1)$$
.

Proof. If we let $(\log_2 K - 1)^2/9 - (\log_2 K - 1)/6 = \log_2 K$, then $\log_2 K = (25 + 3\sqrt{65})/4 > 12$ or $(25 - 3\sqrt{65})/4 < 1$. Therefore if $1 \le \log_2 K \le 12$, and $2 \le K \le 4096$, then

$$\frac{1}{9}(\log_2 K - 1)^2 - \frac{1}{6}(\log_2 K - 1) < \log_2 K .$$

Since W_{κ} cannot have more than N(K) collinear points, we need only consider K > 4096.

We may let $S = \{i, j\}$ without loss of generality, where *i* and *j* are orthonormal unit vectors.

For every positive integer m and nonnegative integer n, let $A_0^m = i$, and let

$$A_{n+1}^{m} = (mA_{n}^{m}, 2^{n}RJA_{n}^{m})$$
,

where Ji = j and Jj = i. Let $V = \{v_p\}_{p=1}^N = \mu A_{\nu}^{\mu}$, where μ is the greatest integer less than or equal to $((7/9)K)^{1/3}$, and ν is the least integer greater than or equal to $\log_2 \mu - 3/2$. Note that since K > 4096, we have $\mu \ge 14$, and $\nu \ge 3$. Let $z_p = \sum_{q=1}^p v_q$ for each p, and let $W = \{z_p\}_{p=1}^N$. We maintain that W has no more than K collinear points and that $\log_2 N > (\log_2 K - 1)^2/9 - (\log_2 K - 1)/6$.

Let $b_0 = 1$ and let $b_{n+1} = (\mu + 2^n)b_n$. Then b_n is the cardinality of A_n^{μ} , and $N = \mu b_{\nu}$. Clearly $b_n \ge \mu^n$, so $N \ge \mu^{\nu+1}$ and $\log_2 N \ge (\nu + 1) \log_2 \mu \ge (\log_2 \mu - 1/2) \log_2 \mu$. Since μ is the greatest integer less than or equal to $((7/9)K)^{1/3}$, and $((7/9)K)^{1/3} > 14$, we have $\mu > (14/15)((7/9)K)^{1/3} > ((1/2)K)^{1/3}$. It follows that $\log_2 N > 1/9[\log_2((1/2)K)]^2 - \log_2((1/2)K)/6 = (\log_2 K - 1)^2/9 - (\log_2 K - 1)/6$.

We now prove that W has no more than K collinear points.

Let $C_n^{\alpha} = \{z_p: \alpha b_n \leq p \leq (\alpha + 1)b_n\}$. For each n, all C_n^{α} are congruent; specifically one can get from any one to any other by a translation plus, possibly, a reflection about the major diagonal (i.e., a reflection about the line passing through the vector i + j, which interchanges i and j), followed by a rotation about the origin of 180°. This reflection plus rotation is equivalent to a reflection about the line perpendicular to the major diagonal (i.e., the line passing through the vector i - j). We will refer to this latter line as the minor diagonal. Let

$$U_n^eta = \{C_n^lpha:eta(\mu+2^n) \leq lpha < (eta+1)(\mu+2^n) \ ext{if } n
eq
u ext{ and } U_
u^\circ = \{C_
u^lpha: 0 \leq lpha \leq \mu\} \ .$$

Note that $C_{n+1}^{\beta} = \{z_p: \beta(\mu + 2^n)b_n \leq p \leq (\beta + 1)(\mu + 2^n)b_n\}$, so U_n^{β} is a partition of C_{n+1}^{β} and U_{ν}^{β} is a partition of W. We now consider a line with slope m and determine for each n, the maximum number of elements of U_n^{β} which the line can intersect (the maximum number cannot depend on β , since all C_{n+1}^{β} are congruent). Let r_n be this maximum number. Then the line cannot intersect more than $r = \prod_{\nu=0}^{\nu} r_n$ points of W.

Let s_n be the slope of z_{b_n} ; i.e., $s_n = y_n/x_n$ where $z_{b_n} = x_n i + y_n j$. The slope of $z_{(\alpha+1)b_n} - z_{\alpha b_n}$ is then either s_n or s_n^{-1} , depending on whether C_n^{α} is a simple translation of C_n^{α} , or a translation of the reflection of C_n^{α} about the minor diagonal. We wish to find a lower bound on s_n/s_{n-1} .

Now $x_0 = 1$, $y_0 = 0$, $x_{n+1} = \mu x_n + 2^n y_n$, and $y_{n+1} = \mu y_n + 2^n x_n$. It follows that x_n , y_n , and s_n are strictly positive for all $n \ge 1$. We now prove by induction that $s_n < 2^n/\mu$. Clearly $s_0 = 0 < 2^0/\mu$ and $s_1 = 1/\mu < 2^1/\mu$. Suppose $s_n < 2^n/\mu$. Let $t_n = 2^n/s_n\mu$. Then $t_n > 1$. Now

$$egin{aligned} \mathbf{s}_{n+1} &= (\mu y_n + 2^n x_n)/(\mu x_n + 2^n y_n) \ &= (\mu s_n + 2^n)/(\mu + 2^n s_n) \ &= (\mu s_n + \mu s_n t_n)/(\mu + \mu s_n^2 t_n) \ &= (s_n + s_n t_n)/(1 + s_n^2 t_n) \ . \end{aligned}$$

Thus

$$egin{aligned} t_{n+1} &= 2^{n+1} / s_{n+1} \mu = 2 s_n t_n / s_{n+1} \ &= 2 s_n t_n (1 + s_n^2 t_n) / (s_n + s_n t_n) \ &= 2 t_n (1 + s_n^2 t_n) / (t_n + 1) \;. \end{aligned}$$

We now view t_{n+1} as a function of the real variables t_n and s_n , and compute its partial derivatives:

$$\partial t_{n+1} / \partial t_n = 2(s_n^2 t_n^2 + 2s_n^2 t_n + 1) / (t_n + 1) > 0$$

and

$$\partial t_{n+1}/\partial s_n = 4t_n^2 s_n/(t_n+1) > 0$$
 .

Since t_{n+1} has the value 1 when $s_n = 0$ and $t_n = 1$, it follows that $t_{n+1} > 1$ when $s_n \ge 0$ and $t_n > 1$, as is the case here. Therefore $s_{n+1} < 2^{n+1}/\mu$.

Next, recall that $\nu - 1 < \log_2 \mu - 3/2$, so if $n \leq \nu - 1$, then $2^n \leq 2^{\nu-1} < 2^{-3/2}\mu$. Since $2^n > s_n\mu$, it follows firstly that $s_n < 2^{-3/2}$, and secondly that

$$egin{aligned} &s_{n+1}/s_n = (\mu s_n + 2^n)/(\mu s_n + 2^n s_n^2) \ &> 2\mu s_n/(\mu s_n + 2^{-3/2}\mu s_n^2) \ &= 2/(1 + 2^{-3/2}s_n) > 2\left/ig(1 + rac{1}{8}ig) = rac{16}{9} \end{aligned}$$

It follows that, given m, there is at most one n such that $(3/4)s_n \leq m \leq (4/3)s_n$. Suppose there exists λ such that $(3/4)s_2 \leq m \leq (4/3)s_2$. Then $m < (3/4)s_{2+1}$ and $m > (4/3)s_{2-1}$. Moreover, for all $n > \lambda + 1$, we have $m < (27/64)s_n < (1/2)s_n$, and for all $n < \lambda - 1$, we

have $m > (64/27)s_n > 2s_n$. All of the above also holds if we replace s_n by s_n^{-1} , except that some of the inequalities are reversed and constants replaced by their reciprocals in the obvious way.

We now calculate for each of the five cases, $n = \lambda$, $n = \lambda + 1$, $n = \lambda - 1, n > \lambda + 1$, and $n < \lambda - 1$, the maximum number r_n of elements of U_n^{β} which a line of slope *m* can intersect. We can assume without loss of generality that C_{n+1}^{β} is a simple translation of C_{n+1}° ; if C_{n+1}^{β} is a translation of the reflection of C_{n+1}° about the minor diagonal, then we can apply the same argument, replacing s_n by s_n^{-1} . Then C_n^{α} is a simple translation of C_n^{α} for $\beta(\mu + 2^n) \leq 1$ $lpha < eta(\mu+2^n)+\mu$, and a translation of the reflection of $C^{\scriptscriptstyle 0}_n$ for $\beta(\mu+2^n)+\mu \leq \alpha < (\beta+1)(\mu+2^n)$. For each α , the first point of $C_n^{\alpha+1}$ coincides with the last point of C_n^{α} . It is easy to prove by induction on n that C_n° (and therefore C_n^{α} for all α) lies entirely within a right triangle, with sides x_n and y_n adjacent to the right angle, and with the first and last points of C_n^0 at opposite ends of the hypotenuse. Therefore the sets C_n^{α} : $\beta(\mu + 2^n) \leq \alpha < \beta(\mu + 2^n) + \beta(\mu + 2^n)$ μ lie within congruent right triangles, whose hypotenuses are adjacent segments of a line with slope s_n (see Fig. 1). It follows

FIGURE 1

that a line with slope $m > s_n q/(q-1)$ or $m < s_n (q-1)/q$ can intersect at most q of the sets $C_n^{\alpha}: \beta(\mu+2^n) \leq \alpha < \beta(\mu+2^n) + \mu$ at distinct points (i.e., assign the last point of each set C_n^{α} to the set $C_n^{\alpha+1}$, and do not count the line as intersecting C_n^{α} if it only intersects this last point). Suppose $m \leq 1$. Then $m < (1/2)s_s^{-1}$, and a line of slope *m* can intersect no more than two of the sets C_n^{α} : $\beta(\mu + 2^n) + \beta(\mu + 2^n)$ $\mu \leq \alpha < (\beta + 1)(\mu + 2^n)$. If $n = \lambda$, then a line of slope m can intersect all μ of the sets $C_n^{\alpha}: \beta(\mu + 2^n) \leq \alpha < \beta(\mu + 2^n) + \mu$ for a total of $\mu + 2$. If $n = \lambda + 1$ or $\lambda - 1$, the line can intersect at most 4 of the sets $C_n^{\alpha}: \beta(\mu+2^n) \leq \alpha < \beta(\mu+2^n) + \mu$, for a total of 6, while if $n > \lambda + 1$ or $n < \lambda - 1$, the line can intersect at most two of the sets $C_n^{\alpha}: \beta(\mu+2^n) \leq \alpha < \beta(\mu+2^n) + \mu$ for a total of 4. If m > 1, then we obtain essentially the same results by redefining λ so that $(3/4)s_{\lambda}^{-1} \leq m \leq (4/3)s_{\lambda}^{-1}$, the only difference being that μ is replaced by 2ⁿ, which in any case is less than μ . Therefore we have $r_n \leq \mu + 2$ if $n = \lambda$, $r_n \leq 6$ if $n = \lambda - 1$ or $\lambda + 1$, and $r_n \leq 4$ for all other *n*. Finally, we have

$$egin{aligned} r &= \prod_{n=0}^
u r_n \leq (\mu+2) \cdot 6^2 \cdot 4^{
u-2} < 36(\mu+2) \cdot 4^{\log_2 \mu - 5/2} \ &= rac{36}{32} \mu^2 (\mu+2) \leq rac{9}{7} \mu^3 \leq K \;. \end{aligned}$$

If λ does not exist, then there are at most two values of *n* for which $(27/64)s_n \leq m \leq (64/27)s_n$, and these two values can take the place of $\lambda - 1$ and $\lambda + 1$ in our argument.

REMARK. We can use this method to get slightly better results as follows: The method works by partitioning W into a heiarchy of sets, each set of order n + 1 being partitioned into $\mu + 2^n$ sets of order n, and showing that for almost all n, a given line can intersect at most four sets of order n within a given set of order n + 1. Suppose that instead of using the partition based on the sets C_n^a , we modify this partition slightly by splitting each C_n^a into two sets of order n, namely $\{z_p: \alpha b_n \leq p \leq \alpha b_n + \mu b_{n-1}\}$ and $\{z_p: \alpha b_n + \mu b_{n-1} \leq p \leq (\alpha + 1)b_n\}$. Then each set of order n + 1 would have either 2μ or 2^{n+1} sets of order n, and it should not be hard to show that for almost all n, a given line can intersect at most three sets of order n within a given set of order n + 1. We would then have $r = c\mu \cdot 3^\nu = c\mu^{1+\log_2 3}$, where c is a constant which does not depend on K, and finally

$$\log_2 N = (1 + \log_2 3)^{-2} (\log_2 K)^2 + O(\log_2 K)$$
.

However, it seems impossible to push this method any further.

THEOREM 2. Suppose that S contains L elements which are pairwise independent over R. Then there exists an S-walk $\Omega = \{u_i\}_{i=1}^N$ containing no set of K + 1 collinear points, such that

$$\log_2 N > \frac{1}{9} [\log_2 (K-1) - 1]^2 - \frac{1}{6} [\log_2 (K-1) - 1] + \log_2 L^* - 2 ,$$

where $L-2 \leq L^* \leq L+1$ and $L^* \equiv 0 \mod 4$.

Proof. The L elements of S with distinct arguments must include L/2 elements (if L is even) or (L+1)/2 elements (if L is odd) in the same half-plane. Label these elements s_1, s_2, s_3, \cdots in order of their arguments. For $1 \leq n \leq (1/4)L^*$, let $W_n = \varphi_n W$ where W is defined as in the proof of Theorem 1, and φ_n is the linear vector operator which maps i to s_{2n-1} and j to s_{2n} . Let N_0 be the cardinality of W and let $w_n = xs_{2n-1} + ys_{2n}$ be the final element of W_n . For $1 \leq i \leq N_0$, let z_i be defined as in the proof of Theorem 1, and let $u_i = \varphi_1 z_1$. Let $u_{N_0n+i} = \sum_{j=1}^n w_j + \varphi_{n+1} z_i$ for $1 \leq n \leq (1/4)L^* - 1$. Finally, let $N = (1/4)L^*N_0$ and let $\mathcal{Q} = \{\boldsymbol{u}_i\}_{i=1}^N$. Note that \mathcal{Q} is constructed by placing the W_n end to end in sequence.

By Theorem 1,

$$\log_2 N > rac{1}{9} (\log_2 K - 1)^2 - rac{1}{6} (\log_2 K - 1) + \log_2 L^* - 2 \; .$$

We will now prove that no K + 2 points of Ω are collinear. Substituting K-1 for the bound variable K then gives us Theorem 2 for the case $K \ge 3$. For the case K = 2, we simply let $u_i = \sum_{j=1}^{i} s_j$. The resulting set $\{u_i\}$, which contains at least $(1/2)L^*$ elements, is the set of vertices of a convex polygon; hence no three elements are collinear.

Let $T_n = \{u_i\}_{i=N_0(n-1)+1}^{N_0(n-1)+1}$ and let $t_n = \sum_{j=1}^n w_j$, so that t_n is the final element of T_n . Let $t_0 = 0$ and let $r_n = t_{n-1} + xs_{2n-1}$ for $n \ge 1$. Note that $t_n = r_n + ys_{2n}$. Note also that from results proved previously, the set T_n must lie entirely on or in the interior of the triangle Δ_n with vertices t_{n-1} , r_n , and t_n . Consequently any line which intersects T_n must intersect Δ_n . Now consider the polygon P with vertices $t_0, r_1, t_1, r_2, t_2, \cdots, r_{L^*/4}, t_{L^*/4}$ in that order. The (directed) edges of this polygon are the vectors xs_1, ys_2, xs_3, \cdots , $ys_{L^{*/2}}$, and $-x\sum_{n=1}^{J^{*/4}} s_{2n-1} - y\sum_{n=1}^{L^{*/4}} s_{2n}$. Since the vectors s_1, s_2, s_3, \cdots are listed in order of increasing argument, and the range of all their arguments is less than 180°, it follows that the interior angles of P are all less than 180° , so P is convex. Now any line intersecting Δ_n , and in particular any line intersecting T_n , must intersect at least two sides of Δ_n (including each vertex in its two adjacent sides), and therefore must intersect P. Since P is convex, a line can only intersect P at one or two points, or along an edge. Therefore no line can intersect more than two of the T_{m} . Unless the slope of a line is between that of s_{2n-1} and s_{2n} inclusive, it can only intersect one point of T_n . By Theorem 1, no line can intersect more than K points of T_n . Therefore, no line can contain more than K+1 points of Ω .

REMARK. In order to compare these results with the upper bound in [3], we can consider the case where $S = \{s \in Z^2 : ||s|| \leq M\}$. Since the number of lattice points in a disc of radius R is $\pi R^2 + O(R)$ [2], we know that the number of lattice points with both coordinates divisible by q, in a disc of radius M, is $\pi M^2/q^2 + O(M/q)$. Therefore the number L of lattice points with relatively prime coordinates is

$$\pi M^2 \sum_{n=0}^{\infty} (-1)^n \sum_{q \in Q_n} q^{-2} + O(M \sum_{q \in Q} q^{-1})$$
 ,

where Q is the set of square free positive integers less than or equal to M, and Q_n is the set of integers in Q with n distinct prime factors. It follows [1] that

$$L = 6M^2/\pi + O(M\log M)$$
 .

Finally, if we let N(K, M) be the length of the longest S-walk with no more than K collinear points, and we choose any constants $c_1 < (9 \log 2)^{-1}$ and $c_2 > 2^{13} \log 2$, then we have

 $M^2 \exp [c_1 (\log K)^2] < N(K, M) < \exp [c_2 M^4 K^4]$

for all M and all but a finite number of K.

References

1. T. M. Apostol, Introduction to Analytic Number Theory, Springer-Verlag, New York, (1976), 63.

2. H. Rademacher, Lectures on Elementary Number Theory, Blaisdell, New York, (1964), 100.

3. L. T. Ramsey and J. L. Gerver, On certain sequences of lattice points, Pacific J. Math., 83 (1979), 357-363.

Received June 16, 1978.

UNIVERSITY OF HAWAII HONOLULU, HI 96822

Current address: University of Georgia Athens, GA 30602

PACIFIC JOURNAL OF MATHEMATICS

EDITORS

DONALD BABBITT (Managing Editor)

University of California Los Angeles, CA 90024

HUGO ROSSI University of Utah Salt Lake City, UT 84112

C. C. MOORE and ANDREW OGG University of California Berkeley, CA 94720

J. DUGUNDJI

Department of Mathematics University of Southern California Los Angeles, CA 90007

R. FINN and J. MILGRAM Stanford University Stanford, CA 94305

ASSOCIATE EDITORS

E. F. BECKENBACH

B. H. NEUMANN

K. YOSHIDA

SUPPORTING INSTITUTIONS

F. WOLF

UNIVERSITY OF BRITISH COLUMBIA CALIFORNIA INSTITUTE OF TECHNOLOGY UNIVERSITY OF CALIFORNIA MONTANA STATE UNIVERSITY UNIVERSITY OF NEVADA, RENO NEW MEXICO STATE UNIVERSITY OREGON STATE UNIVERSITY UNIVERSITY OF OREGON UNIVERSITY OF SOUTHERN CALIFORNIA STANFORD UNIVERSITY UNIVERSITY OF HAWAII UNIVERSITY OF TOKYO UNIVERSITY OF UTAH WASHINGTON STATE UNIVERSITY UNIVERSITY OF WASHINGTON

The Supporting Institutions listed above contribute to the cost of publication of this Journal, but they are not owners or publishers and have no responsibility for its content or policies.

Mathematical papers intended for publication in the *Pacific Journal of Mathematics* should be in typed form or offset-reproduced, (not dittoed), double spaced with large margins. Please do not use built up fractions in the text of the manuscript. However, you may use them in the displayed equations. Underline Greek letters in red, German in green, and script in blue. The first paragraph or two must be capable of being used separately as a synopsis of the entire paper. Please propose a heading for the odd numbered pages of less than 35 characters. Manuscripts, in triplicate, may be sent to any one of the editors. Please classify according to the scheme of Math. Reviews, Index to Vol. **39**. Supply name and address of author to whom proofs should be sent. All other communications should be addressed to the managing editor, or Elaine Barth, University of California, Los Angeles, California, 90024.

50 reprints to each author are provided free for each article, only if page charges have been substantially paid. Additional copies may be obtained at cost in multiples of 50.

The *Pacific Journal of Mathematics* is issued monthly as of January 1966. Regular subscription rate: \$84.00 a year (6 Vols., 12 issues). Special rate: \$42.00 a year to individual members of supporting institutions.

Subscriptions, orders for numbers issued in the last three calendar years, and changes of address should be sent to Pacific Journal of Mathematics, P.O. Box 969, Carmel Valley, CA 93924, U.S.A. Older back numbers obtainable from Kraus Periodicals Co., Route 100, Millwood, NY 10546.

PUBLISHED BY PACIFIC JOURNAL OF MATHEMATICS, A NON-PROFIT CORPORATION

Printed at Kokusai Bunken Insatsusha (International Academic Printing Co., Ltd.). 8-8, 3-chome, Takadanobaba, Shinjuku-ku, Tokyo 160, Japan.

> Copyright © 1979 by Pacific Journal of Mathematics Manufactured and first issued in Japan

Pacific Journal of Mathematics Vol. 83, No. 2 April, 1979

Patrick Robert Ahern, On a theorem of Hayman concerning the derivative of a function of bounded characteristic	297
Walter Allegretto, <i>Finiteness of lower spectra of a class of higher order elliptic operators</i>	303
Leonard Asimow, Superharmonic interpolation in subspaces of $C_c(X)$	311
Steven F. Bellenot, An anti-open mapping theorem for Fréchet spaces	325
B. J. Day, <i>Locale geometry</i>	333
John Erik Fornaess and Steven Krantz, <i>Continuously varying peaking</i> <i>functions</i>	341
Joseph Leonide Gerver, <i>Long walks in the plane with few collinear points</i>	349
Joseph Leonide Gerver and Lawrence Thom Ramsey, <i>On certain sequences of</i>	357
John R. Graef, Yuichi Kitamura, Takaĉi Kusano, Hiroshi Onose and Paul Winton	551
Spikes On the nonoscillation of perturbed functional-differential	
equations	365
James A. Huckaba and James M. Keller, <i>Annihilation of ideals in commutative</i>	
rings	375
Anzelm Iwanik, Norm attaining operators on Lebesgue spaces	381
Surjit Singh Khurana, <i>Pointwise compactness and measurability</i>	387
Charles Philip Lanski, <i>Commutation with skew elements in rings with</i>	
involution	393
Hugh Bardeen Maynard, A Radon-Nikodým theorem for finitely additive bounded measures	401
Kevin Mor McCrimmon, <i>Peirce ideals in Jordan triple systems</i>	415
Sam Bernard Nadler, Jr., Joseph E. Quinn and N. Stavrakas, Hyperspaces of	
compact convex sets	441
Ken Nakamula, An explicit formula for the fundamental units of a real pure sextic number field and its Galois closure	463
Vassili Nestoridis, <i>Inner functions invariant connected components</i>	473
Vladimir I. Oliker, On compact submanifolds with nondegenerate parallel	
normal vector fields	481
Lex Gerard Oversteegen, Fans and embeddings in the plane	495
Shlomo Reisner, On Banach spaces having the property G.L.	505
Gideon Schechtman, A tree-like Tsirelson space	523
Helga Schirmer, <i>Fix-finite homotopies</i>	531
Jeffrey D. Vaaler, A geometric inequality with applications to linear forms	543
William Jennings Wickless, T as an G submodule of G	555
Kenneth S. Williams, <i>The class number of</i> $Q(\sqrt{-p})$ <i>modulo</i> 4, <i>for</i> $p \equiv 3$ (mod 4) <i>a prime</i>	565
James Chin-Sze Wong, On topological analogues of left thick subsets in	
semigroups	571