
Pacific Journal of
Mathematics

ANNIHILATION OF IDEALS IN COMMUTATIVE RINGS

JAMES A. HUCKABA AND JAMES M. KELLER

Vol. 83, No. 2 April 1979



PACIFIC JOURNAL OF MATHEMATICS
Vol. 83, No. 2, 1979

ANNIHILATION OF IDEALS IN COMMUTATIVE RINGS

JAMES A. HUCKABA AND JAMES M. KELLER

Four theorem are proved concerning the annihilation of
finitely generated ideals contained in the set of zero divisors
of a commutative ring.

1* Introduction* An important theorem in commutative ring
theory is that if / is an ideal in a Noetherian ring and if / consists
entirely of zero divisors, then the annihilator of I is nonzero. This
result fails for some non-Noetherian rings, even if the ideal / is
finitely generated. We say that a commutative ring R has Property
(A) if every finitely generated ideal of R consisting entirely of zero
divisors has nonzero annihilator. Property (A) was originally studied
by Y. Quentel in [7]. (Our Property (A) is QuenteΓs Condition (C).)
Theorem 1 shows that all nontrivial graded rings have Property (A).
(For our purposes a nontrivial graded ring is a ring R graded over
the integers such that R contains an element x, not a zero divisor,
of positive homogenous degree.) Theorem 2 completely characterizes
those reduced rings with Property (A).

Property (A) is closely connected with two other conditions on
a reduced ring. One is the annihilator condition (a.c): If (a, b) is
an ideal of R, then there exists ceR such that Ann(α, b) — Ann(c).
The other condition is that MIN(iί), the space of minimal prime
ideals of R, is compact. Our Theorem 3 shows that for a reduced
coherent ring R Property (A), (a.c), and the total quotient ring of
R being a von Neumann regular ring are equivalent conditions; and
that each (and hence all) of these conditions imply that MIN(Λ) is
compact. Finally, in Theorem 4, we prove that every reduced non-
trivial graded ring satisfies (a.c).

We assume that all rings are commutative with identity. If R
is such a ring, let T(R) be the total quotient ring of R, let Z(R) be
the set of zero divisors of R, and let Q(R) denote the complete ring
of quotients of R as defined in [5]. Elements of R that are not zero
divisors are called regular elements.

2* Graded rings*. Y. Quentel, [7, p. 269], proved that if R is
a reduced ring, then the polynomial ring R[X] satisfies Property (A).
We generalize this to arbitrary nontrivial graded rings, and hence
to polynomial rings that are not necessarily reduced.

THEOREM 1. // R is nontrivial graded ring, then R satisfies
Property (A).
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Proof, Let / = (aί9 , ap) be an ideal of R contained in Z(R).
For i — 1, , p, let at = Σfcί^ &?} be the homogeneous decomposi-
tion of aif where deg b{

k

i] = fc. Let x be a regular homogeneous element
in R of degree t > 0. Construct an element α as follows:

where the s< are integers such that ts2 + m2 > n19 and *«< + mt >
Ui-ί + ίs^ij i — 3, , p. There exists a nonzero homogeneous element
c such that ca = 0. (The proof of this is identical to the proof of
McCoy's Theorem: If / is a zero divisor in R[X], then there is a
nonzero 6el2 such that bf = 0.)

Since dê &ĵ αf*] ^ deg[&i% '̂] unless i = j" and A; = h, the homo-
geneous compontets of a are {δ^α *}*™*.;,**". Thus, by the unique
representation in terms of the homogeneous components cb^x8* = 0
for all i, k. Since x $ Z(R), cb? = 0 for all i, k. Therefore, c e Ann(I).

COROLLARY 1. If R is any ring, then the polynomial ring R[X]
satisfies Property (A).

3* Reduced rings. In this section all rings are assumed to be
reduced.

THEOREM 2. For a reduced ring R, the following statements are
equivalent:

(1) R has Property (A);
(2) T(R) has property (A);
(3) If I is a finitely generated ideal of R contained in Z(R),

then I is contained in a minimal prime ideal of R;
(4) Every finitely generated ideal of R contained in Z(R),

extends to a proper ideal in Q(R).

Proof. (1) — (2) is clear.
(1) —> (3): Assume that I is a finitely generated ideal contained

in Z(R)f but not contained in a minimal prime ideal of R. Then
cl = 0 implies that c is in every minimal prime ideal of R; i.e., c = Q.

(3) —• (1): Let I = (xlf •• , a ; J c P , P a minimal prime ideal of R.
By [2, p. I l l ] , choose zt e Annfo), zt £ P. Then z = z±z2 zn Φ 0 and
z e ΓU=i Ann(X) = Ann(J).

(1) —* (4): If I is a finitely generated ideal contained in Z(R),
then IQ(R) has nonzero annihilator in Q(R). Hence, IQ(R) S Q(R).
has nonzero annihilator in Q(R). Hence, IQ(i2)SQ(i2).

(4) —> (1): Assume that I is a finitely generated dense ideal of
R such that IaZ(R). (A subgroup H of a ring R is dense, if
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Anniϊ = 0.) Then I is dense in Q(R), [5, p. 41], and whence IQ(R)
is dense in Q(R). But Q(R) is a von Neumann regular ring, [5, p. 42];
and von Neumann regular rings have Property (A), [3, p. 30]. By
the equivalence of (1) and (3) of this theorem, IQ(R) is not contained
in any minimal prime ideal of Q(R). But in Q(R), minimal prime
ideals are maximal. Therefore, IQ{R) = Q(R), a contradiction.

The results about the compactness of MIN(i2) that we need are
summarized in Theorems A and B.

THEOREM A. The following conditions on a reduced ring R are
equivalent:

(1) Q(R) is a flat R-module;
(2) MIN(ϋJ) is compact;
( 3 ) {M Π R: M e Spec Q(R)} = MIN(Λ);
(4) If aeR and if U = {MeSpecQ(R): a<£ M Π R}, then there

exists a finitely generated ideal I such that

Spec Q(R)\U ={Me Spec Q(R): I <£ M f) R}

( 5 ) If X is an indeterminate, then T(R[X]) is a von Neumann
regular ring.

Proof. A. C. Mewburn, in [6], proved the equivalence of (1)
through (4). Quentel proved that (2) and (5) are equivalent, [7].

THEOREM B. The following conditions on a reduced ring R are
equivalent:

(1) T(R) is a von Neumann regular ring;
(2) R satisfies Property (A) and MIN(JZ) is compact;
(3) R satisfies (a.c.) and MIN(ϋJ) is compact.

Proof. In [7], Quentel proved the equivalence of (1) and (2);
while M. Henriksen and M. Jerison, [2], showed that (1) and (3) are
the same.

A ring R is coherent in case I is a finitely generated ideal of R
implies there is an exact sequence Rm —> Rn —> I —> 0.

THEOREM 3. For a reduced coherent ring R, the following con-
ditions are equivalent:

(1) R has Property (A);
(2 ) R has (a.c);
( 3) T(R) is a von Neumann regular ring.

Proof. (1) -> (3): In view of Theorem B(2) we must show that
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MIN(iί) is compact. Let x e R. Since R is a coherent ring, Ann(#) = I
is a finitely generated ideal of R, [1, p. 462]. Let U = {Me SpecQ(Λ):
x £ M n R}. Assume that IaMnR for some Me Spec Q(R)\U, then
the ideal (/, x) c M Π R. It is clear that M Π T{R) is a proper ideal
of T(R) and that Mf]R = ΛfΠ T(R)Γ)R. Hence, (/, αO<=Λfni2cZ(i2).
By Property (A), Ann(/, #) =£ 0. But this contradicts the fact that
the ideal (/, x) = xR + Ann(cc) is dense, [5, p. 42]. By Theorem A(4),
MIN(ί2) is compact.

(2) —> (3): Let x e R, then Ann(x) = (zlf , zn) and Ann{Ann(x)} =
Annfo, , zn) = Ann(2). This last condition, given in [2], implies
that MIN(JB) is compact (even if R does not have a unit).

(3) -> (1) and (3) -> (2) are clear.

COROLLARY 2. Let R be a reduced coherent ring.
( 1 ) If R satisfies any {and hence all) of the conditions of

Theorem 3, the MIN(i?) is compact.
(2) If R is a nontrivial graded ring, then T(R) is a von

Neumann regular ring.

THEOREM 4. If R is a reduced nontrivial graded ring, then R
satisfies (a.c).

Proof. Let (α, b) be an ideal in R. If (α, 6) ςt Z(R), then Ann(α, 6) =
Ann(l). Assume that (α, b) c Z(R), and write a and 6 in terms of
their homogeneous components; say, a — am Λ- + an and b = bh +
• + 6fc. Let x be a homogeneous element of R, x £ Z{R), of degree
t > 0. Choose an integer s satisfying h + st > n and let c = am +
• + αn + bhx

s + + bkx
s.

Since R in a reduced, Ann(c) = f)P, where P varies over the
minimal prime ideals of R not containing c. By Lemma 3 of [8,
p. 153], each P is a homogeneous ideal. Hence, Γ\P = Ann(c) is also
homogeneous.

Let d be a homogeneous element in Ann(c). Then dat = 0 and
dbjX8 = 0 for all i, j. Then, da = 0 = db and we have Ann(c)c
Ann(α, b). The other inclusion is obvious.

Let R be a graded ring which contains a regular homogeneous
element. Define Tq = {α/δ: α and δ are homogeneous, 6 is regular,
and g = degree a — degree b). Just as in the integral domain case,
[8, p. 157], ΣTq is a graded ring containing R as a graded subring.

COROLLARY 3. Let R be a reduced nontrivial graded ring. The
following statements are equivalent:

( 1 ) MIN(JR) is compact)
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( 2 ) MIN(Γ0) is compact;
( 3 ) T(R) is a von Neumann regular ring.

Proof. (1) <- (3) by Theorem B.
(1) <-> (2): If S is the set of regular homogeneous elements of R,

then Rs = ΣTq and MIN(Λ) is homeomorphic to MIN(RS). By [4,
Lemma 1], there is a one-to-one order preserving correspondence
between the graded prime ideals of Rs and the graded prime ideals
of TQ. It follows from [8, p. 153] that the minimal prime ideals of
a graded ring are graded. Thus, MΪN(RS) is homeomorphic to MIN(Γ0)

REMARKS. (1) MINOR) compact -»Property A or (a.c). This
follows from an example in [6]. (2) Property (A) -*-> MIN(iZ) compact.
By [6. p. 427], there is a ring R for which MIN(i2) is not compact.
Applying Theorem B(5), T(R[X]) is not von Neumann regular. But
R[X] has Property (A), [7, p. 269]. Thus, MIN(i2[X|) cannot be
compact.
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