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Among other results it is proved that if (X,%μ) is a
probability space, E a Hausdorff locally convex space such
that (Ef, σ(E\ E)) contains an increasing sequence of abso-
lutely convex compact sets with dense union, and f: X-> E
weakly measurable with f(X) c K> a weakly compact convex
subset of E, then / is weakly equivalent to g:X->E with
g{X) contained in a separable subset of K.

In [8] and [9] some remarkable results are obtained for the
pointwise compact subsets of measurable real-valued functions and
some interesting applications to strongly measurable Banach space-
valued functions are established. In this paper we continue those
ideas a little further. We first give a somewhat different proof of
([9], Theorem 1) and then apply it to give a generalization of
classical Phillip's theorem ([5]). Also some result about equicontinu-
ous subsets of C(X), the space of all continuous real-valued functions
on (X, τp) (τp is the lifting topology, [10], p. 59; in [8] this topology
is denoted by Tp) are obtained.

All locally convex spaces are taken over reals and notations of
[6] are used. For a topological space Y, C{Y) (resp. Cb(Y)) will
denote the set of all (resp. all bounded) real-valued continuous
functions of Y. N will denote the set of natural numbers.

In this paper (X, 9ί, μ) is a complete probability measure space.
Let £f be the set of all real-valued Sί-measurable functions on X,
Jίf™, the essentially bounded elements of £f, and AT00, the bounded
elements of &. We fix a lifting, [10], p: £f°° -+ M°° and on X we
always take the lifting topology τp ([10], p. 59). For fe^f,ge<£f,
we write / = g if f(x) = g(x), VxeX, and / = g if fix) = g(x), a.e
[μ]. For a Hausdorff locally convex space E, a function /: X-* E
is said to be weakly measurable if h<>f is Sί-measurable, Vfee£",
the topological dual of E. Two weakly measurable functions
/,: X-^E, ί = 1, 2, are said to be weakly equivalent if hofλ = h<>f2,
VheE'. The space ^ and norms || -||x and 1HU have the usual
meanings. We shall call a topological space, countably compact if
every sequence in it has a cluster point, and sequentially compact
if every sequence has a convergent subsequence.

We start with a different proof of the following result of [9].
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THEOREM 1 ([9], Theorem 1). Let H be a subset of &> such that
for any hλ eH, h2e H, hx Φ h2 implies hλ φ. h2. Then, with the
pointwise topology on H, the following are equivalent:

( i ) H is sequentially compact;
(ii) H is compact and metrizable.

If H is convex, then each of (i) and (ii) is also equivalent to:
(iii) H is compact;
(iv) H is countably compact.

Proof. By ([6], Theorem 11.2, p. 187) each of (i), (ii), (iii), (iv)
implies that H is relatively compact in Rx', with product topology.
Thus each of these conditions implies that H is pointwise bounded.
Denote by φ the homeomorphism, [0, oo]~> [0, 1], x —> x/(l -f x). For
any a e I, the directed net of all finite subsets of H, let ha —
sup {|fe|: h ea}, and pa ~ p(φ°ha). {pa} is a monotone bounded net
in Ch(X), which is boundedly complete. Let sup pa = P$ Cb(X). This
means there is an increasing sequence {a(n)} c / such that p —
sup paln) (this follows from the fact that μ(p) = sup μ(pa)). Since
pa = φoha, we get Pa^l} is μ-null, Va. From this it follows that
K — p~ι{l) is /i-null. Thus q — (φ~lop)Xχ/κ is a measurable function
such that \h\<Lq a.e. [μ], VheH.

(i) <=> (ii) is simple ([8], Prop. 1, p. 197), the metric d of (ii)
being defined by d(f, g) - || (/ - g)/l + g||lβ (ii) =- (iii) and (iii) => (iv)
are trivial. Now we come to the proof of (iv) => (i). Take a sequence
{f'n}czH. Since 1/(1 + q)H is relatively weakly compact in (£?u 11 | |x)
there exists a subsequence {/J of {f'n} and an / o e ^ ϊ such that
1/(1 + q)fn -> f0 weakly. Thus there exists a sequence {gn} in the
convex hull of {fn: 1 <> n < ô} (note {gn}aH) such that
1/(1 + q)gn-^f0 a.e. M (because a convergent sequence in (£?ίt || lU)
has a subsequence converging a.e. [μ]). Taking / to be a cluster
point of {gn} in H, we get 1/(1 + q)f = fQ(μ). We claim fn -> / in Jϊ.
If fn-+* f there exists an a; 6 X, an ε > 0, and a subsequence {/»} of
{/J such that one of the two following conditions are satisfied:

( i ) f':(x)>f(x) + e, Vn;
(ii) f':(x)<f(x)-6, Vn.

Since 1/(1 + q)f'ή —• 1/(1 + ϊ)/ weakly, proceeding as before we get
a sequence {gZ} in the convex hull of {/«: 1 ̂  ^ < °o} such that
1/(1 + q)gf: -> 1/(1 + q)f a.e. [μ]. If / " is a cluster point of foC'} in
H we get / " Ξ /(j«) but because of (i) or (ii), /"(cc) ^ f(x), a con-
tradiction. This proves that H is sequentially compact.

This result is also proved in [11] by a different method.
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By a classical theorem of Phillips [5], if f:X->Ef E being a
Banach space, is weakly measurable and f(X) is relatively weakly
compact in E, then / is weakly equivalent to a strongly measurable
function ([8], Theorem 3, p. 200). What one really needs to do is
to find a weakly equivalent function g such that g(X) is separable.
The next theorem is a generalization of Phillips' theorem.

THEOREM 2. Let (E, J^~) be a Hausdorff locally convex space
such that there exists an increasing sequence {An} of absolutely con-
vex compact subsets of (E\ σ{E\ E)) whose union is dense in
(E\ σ(E\ E)). Suppose f:X->Eis weakly measurable and f(X) c K,
for some weakly compact convex subset of E. Then there exists a
weakly measurable function g:X->E, g = f{w) and g(X)aK0, a
separable closed convex subset of K.

Proof. Since (E, σ(E, Ef)) can be considered as a subspace of RF\
with product topology, / can be considered as/: X—> RE\ For each
heE\ define g(h) = p(h<>f) and let g:X->RE', (g)h = g(h), VheE'.
g is evidently continuous. If g(xo)gK for some x0 e X, there exists,
by separation theorem ([6], p. 65), an heE' such that h°g{xo)>
sup (if). This is a contradiction since h o f <* sup h(K) implies
p(h o f) ^ sup h(K). Evidently g = f(w). Fix n e N. By Theorem 1,
Bn — {hog: h e An), with the topology of pointwise convergence on
X, is a compact metric space. We metrize E by the seminorms p%,
pn(x) = &xιp{\h(x)\:heAn}. We denote this metric topology by J7^.
For each n, En = (C(BJ, || ||) is a separable Banach space (here || ||
is sup norm), and so F = Πϊ=i En is a separable Frechet space. Let
XQ be the quotient space obtained from X by the equivalent relation,
x ΞΞ y <=> g(x) = g{y). Each xeX0 gives rise to xeC(Bn), x(t) — t{x)
for each teBn, for every n. Thus Xo can be embedded in F, xQ —>
(xOt xQf - ) e F. Taking, on XOf the topology induced by F, we easily
verify that g: Xo -> (E, S"^) is continuous and so (g(X)f J?l) is separa-
ble. Let Ko = the closed convex hull, in (E9 ^~)9 of a countable
dense subset of (g(X), J^l)- If g(X) <£ KQf by separation theorem,
there exists an h e E' and x0 e X such that h ° g(x0) > sup h(K0). Since
{E, ^ ς y z> Uϊ=i Λ>> ? o ^(^0) ^ sup q(K0), Vq e Uϊ=i -A»- Now there ex-
ists a net {fcj c JJ?=i^» s u c ^ that ha->h uniformly on each compact
convex subset of (E,σ(E,Er)). From this it follows h ° flr(α?0) ̂  sup h(K0),
a contradiction. This proves the result.

REMARK 3. If E is metrizable then {E'f σ{E\ E)) contains a
sequence of compact absolutely convex sets whose union is E'. If
Y is a completely regular Hausdorff space containing a <τ-compact
dense set and E — Cb( Y) with strict topology βQ, βlt then it is
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proved in ([3], Theorem 3) that (Ef, σ(E', E)) has an increasing
sequence of absolutely convex compact sets with dense union — here
E is not metrizable.

REMARK 4. The function g: X -> (E, σ(E, Ef)), obtained in this
theorem, is measurable in the sense of ([2], Def. 4, p. 89).

The next theorem, in some sense, is a generalization of ([9],
Theorem 3).

THEOREM 5. Let E be a Hausdorff locally convex space such
that there exist, in (E\ o(E\ E)), an increasing sequence {AJ of
absolutely convex compact sets whose union is Er. Suppose g: X —> E
is weakly measurable such that g ° f Φ 0 implies g ° f ^ 0, for every
feE'. Then g(X) is contained in a separable subspace of E.

Proof. In the notations of Theorem 2, Bn = {hog: he AJ are
compact and metrizable, with the topology of point wise convergence,
and J^l is the metric topology, on E, of uniform convergence on An.
Proceeding exactly as in Theorem 2, we prove that g{X) is a separa-
ble subset of (E, J^l). Let F = (E, ̂ )' and Eo = the closed separa-
ble subspace, in (E, ̂ ~), generated by a countable dense subset of
(g(X), J^l). If g(xo)0Eo for some xoeX there exists, by separation
theorem, an heEf such that h°g(x0) > 0 and h = 0 on EQ. Since
E' = U^=i AnczF, hog(x0) <; sup (h°g(X)) ^ sup h(EQ) = 0, a contradic-
tion. This proves the result.

In the next theorem we do not assume H to be uniformly
bounded ([8], Theorem 4, p. 203).

THEOREM 6. Let H be a pointwise bounded subset of C(X). If
H is equicontinuous then, with the topology of pointwise convergence
on X, its closure in C(X) is compact and metrizable. Conversely
if H is sequentially compact then there is a μ-null set A such that
H is equicontinuous at each point of the open set X\A of (X, τp).

Proof. If H is equicontinuous then its pointwise closed convex
hull Ho, in Rx, lies in C(X) and is compact and convex, and so the
result follows from Theorem 1.

Conversely suppose H is sequentially compact. Then, by
Theorem 1, H is compact and metrizable. By the generalized
Egoroff's theorem ([4], p. 198) there exists a Sί-partition of X =
UΓ=o-2Γ<, with μ(X0) = 0 and μ(Xt) > 0, Vi ^ 1 such that H\x. is
compact in the topology of uniform convergence on Xi9 Vi ^ 1.
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γt = X. π p(Xt), i ^ 1, are nonvoid, disjoint, open subsets of {X, τp)
and μ(A) = 0, where A = X\U?°=i Yf By the Ascoli Theorem ([1],
Ch. X, §2.5), H\Yχ are equicontinuous for each i. The result follows
now.
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