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The inner functions d — exp {(z + l)l(z — 1)} and zd belong
to the same connected component in the space of inner
functions under uniform topology. Therefore, simplification
is not possible in general but it is always possible to
simplify by a finite Blaschke product.

0. Introduction. This work deals with the inner functions of
one variable. A complex, holomorphic function /, bounded on the
open unit disk D of the complex plane is called inner if \f(eίθ)\ = 1
a.e.; where f(etθ) = limp^f(ρeίθ).

In the set F of the inner functions we consider the topology
induced by the Banach space iϊ00; that is, we consider F with the
topology of uniform convergence.

In this work, related to a publication of D. Herrero [2], we are
interested in the connected components of the space F, mainly with
respect to multiplication of inner functions.

Let us denote by / ~ g the fact that the inner functions / and
g belong to the same connected component. The questions that
motivate this work are the following:

(a) For the identity function z, is there an inner function /
such that / ~ zfΊ

(b) Is simplification permitted? That is, does relation fω ~ gω
imply f ~ g for any three inner functions /, g, α>?

The results of this work can be summarized as follow:
(1) "Simplification" by a finite Blaschke product is always

possible.
(2) "Simplification" is not possible in general.
(3 ) If the singular measure μ associated with a singular func-

tion S contains at least one atom, then relation S ~ zS holds.
(4) For any nonconstant inner function g, the inner functions

exp {(g + ϊ)/(g — 1)} and g exp {(g + l)j{g — 1)} belong to the same
connected component.

(5) For any nonconstant singular function S, there exists a
nonconstant inner function g such that: S ~ gS.

In order to prove that simplification by a finite Blaschke product
is possible, we first show that the set zF = {zh: he F] = {xe F:
x(0) = 0} is a retract of F.

In order to give an example of an inner function / such that
/ ~ zf9 we shift the zeros of an infinite Blaschke product in such
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a way that the Blaschke product moves continuously with respect
to the uniform topology.

The following problems seem to be open:
(1) Does relation S ~ zS hold for any singular function?
(2) Find all inner functions such that / ~ zf.
(3) Characterize the inner functions ω such that ωf ~ ωg ==»

f~g tor all f,geF.
(4) Find a necessary and sufficient condition for two inner

functions / and g to belong to the same connected component.

1* Preliminaries. A complex, holomorphic function /, bounded
on the open unit disk D of the complex plane is called inner if its
boundary values have almost everywhere absolute volue one; that is,
relation |/(e")| = l holds almost everywhere (withf(etθ) = limP^f(peiθ)).

It is well-known that a function / is inner if and only if / is
of the form:

f(z) = cz> Π ̂ ^ 4 - exp
\a\ 1 az
^ ^ 4 p \
\at\ 1 — atz ( Jo e%9 —

where c is a complex constant of modulus one (\c\ = 1), k is a non-
negative integer, μ is a positive singular measure on the unit circle
and the points ateD are such that Σie/1 — \at\ < oo.

If μ — 0, then / is a Blaschke product, finite if the set / is finite
or infinite if the set I is infinite (countable).

In the case 1=0 and k = 0, the function / is called singular.
The topology of the uniform convergence on the set F of the

inner functions is induced by the following metric:

d(f, 9) = \\f - g\L = sup \f{z) - g{z)\ - sup ess |/(β") - g{eiθ)\ .
D θeR

Let us denote by / — g the fact that the inner functions / and
g belong to the same connected component in the space F.

In what follows we make use of the well-known facts below:
(1) For any three inner functions /, g and ω the relation

/ — g implies ωf ~ ωg. This is due to the continuity of the multi-
plication of inner functions.

(2) For any inner function / and any complex number a, with
|α| < 1, we have the relation:

f f

for the mapping Dsa—>faeF is continuous.
(3) For every nonnegative integer n, the set of all finite

Blaschke products with exactly n zeros forms a connected component
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and an open and closed subset of F. In particular the set of the
constant inner functions is connected and open and closed in F.

This fact is an easy application of Rouche's theorem.

2* Simplification by £• Let us begin with the question, does
the relation ωf ~ ωg implies f ~ g. This is the problem of "Simpli-
fication". In the case of a finite Blaschke product ω, the answer
to this question is affirmative.

PROPOSITION 1. Let ω be a finite Blaschke product. Then for
any two inner functions f and g, the relation oof ~ ωg implies

f~g.

Proof. The general case easily follows from the case ω — z, to
which we will limit ourselves from now on.

Let us consider the set:

zF = {zh: heF} = {xeF: x(0) = 0} .

The maps z^__zF~> F and Φ: F~->zF, where z*(x) = x/z, Φ(f) =
(/ ~ /(0))/(l - 7(0)/) for feF nonconstant and Φ(J) = z f or / 6 F
constant, are both continuous. (The set of the constant inner func-
tions is, both, open and closed!).

Therefore the mapping z*oφ;F—>F is continuous and the
relation zf ~ zg implies: f — z* ° Φ(zf) ~ z* ° Φ(zg) — g, as Φ{x) = x
for any xezF; that is, Φ is a retraction map and zF is a retract
of F. The proof is complete now.

3. The main result. The following theorem implies in parti-
cular that we cannot "simplify" by any inner function.

THEOREM 1. For any nonconstant inner function g, the inner
functions exp {(g + ΐ)/(g — 1)} and g exp {(g + ΐ)/(g — 1)} belong to the
same connected component.

This theorem applied for the identity function g = z(z(a) — a
for all ae D) implies the following:

PROPOSITION 2. The inner functions d = exp {(z + l)/(z — 1)} and
zd belong to the same connected component (that is: d ~ zd).

Proposition 2 is equivalent to Theorem 1; for Proposition 2
implies also Theorem 1. The point is that the range of the continu-
ous map Tg:F-+H°°, Tg(f) = f °g is contained in F; that is, the
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composition of two inner functions is an inner function ([6] or [8]).
Therefore relation d ~ zd implies:

exp g + = Tg(d) ~ Tg(zd) = g exp g

 H .
g - 1 g - 1

Hence, it remains to prove Proposition 2, which will be a conse-
quence of the following lemma, which is of a concrete geometric
nature on the half-plane:

LEMMA 1. Let

- z

\an\ 1 -
and K2 = Π ^ ^ i — z

1 - β«z

Be two infinite Blaschke products such that K^O) > 0 and K2(0) > 0.
// we denote φ(z) = (1 + z)/(l — z) then we have the following ine-
quality:

^ Σ

2 sup ess
yeR

a rg

Proof of Lemma 1. The pointwise convergence /Λ—>/ implies
trivially the inequality:

We have therefore:

Π ^ ^ ^ - Π ^ ^ .
- β.z

= lim inf

N

U^-,

.) + φ{z)

We notice that |α| = \β\ = |α'| = \β'\ = l= \aβ- a'β'\ £ \a - a'\ +
|/3 — /3'|. Consequently, for almost every z, with \z\ — 1, we have:

π an 1 -
an\ 1 - an φ(an)

% = 1 | α n | \βn

N

+ Σ

.) - ψ{z)
Λi \βn\ 1 - β, φ{βn) + φ(z)

+ | , 1 ^ L α n _ 1 - βn

1 - α, 1 - /9B

<P(z)
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N

n-l

0 0

n-l

a

a

rg

rg

On

βn

On

βn

+ 2

+ 2

N

Σ
oo

Σ

rg
1 - / S . + rg

a ig
- βn

+ 2 sup ess

?>(&.) - φ(z)

arg

The required inequality is now implied.

Proof of Proposition 2. Let ajjb) be the unique point of D such
that φ(an(t)) = 1 + i(n + t)π, where t e [0,1], w e JV* = {1, 2, •} and
φ(z) - (1 + 2)/(l - z).

One, then, verifies easily that:

e_ . J!L α,(0)
I = / • 1 1 I,,. /ΛNI

It is enough to prove that

1 /Λ |αn(0)| 1 — an(O)z

for, then we have

1 - α
...

> W l t h

_ fi α.(0) α.(0) - g .

d = /B, ^ /Bo = fBx
\a,(0)\ 1 - ^ 3

z~dz,

and we obtain the result.
In order to prove Bx ~ BQ> it is sufficient to prove the continuity

of the following map:

that is, limt. t̂o IIB* — iϊjloo = 0 for all tQe[Q, 1]. Using Lemma 1
we essentially have to prove the following fact:

lim sup arg = 0 .
?>(α*(*o)) - i3/

This relation follows immediately from the observation that:

Σ arg
φ(an(t)) - i

arg
3)

0 .
2iπ(n + t0 — \t — to\) — 2iπ(tQ + 3)

k Consequences* Theorem 1 yields trivially the following:
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COROLLARY 1. For any inner function g, there exists an inner
function f such that f ~ gf.

Proposition 2 implies the following more general result:

COROLLARY 2. Let f be an inner function whose singular mea-
sure μ contains at least one atom. Then f ~ zf.

Proof of Corollary 2. We have f — fx exp K(z + a)/(z — a), with
f e F, \a\ = 1 and K > 0. Thus, it is enough to establish the rela-
tion exp K(z + a)\{z — a) ~ z exp K(z + a)/(z — a). By a rotation
this becomes:

exp Kz-±± ~ z exp
z 1

z exp K .
z — 1 z — 1

If K ^ 1, using the known relation d ~ zd (Proposition 2) we
have

exp j £ ^ ± i = d exp (K - l)5-±-i - ^ exp (JKΓ - ± i
2; 1 2; 1

d exp (K l ) ^ exp (JKΓ l )
— 1 2; — 1 z — 1

— 1

If 0 < JBΓ < 1, let us consider the transformation1:

1 - K

1
7Z

1 + K

Evidently w e F and w ~ z. From the known relation d ~ zd we
obtain:

exp K——— = dow ~ (zd)ow = w (d<>w) ~ z (dow) = zexipK—i— .
» — 1 z — 1

REMARK. Corollary 2 implies that if the singular measure μ
associated with a singular function S contains some atoms, then the
relation S ~ zS holds. If the measure μ Φ 0 does not contain any
atoms, then we do not know if the relation S ~ zS is true. It seems
that this problem (probably not difficult) is still open and we offer
the following conjecture:

"Every nonconstant singular inner function S belongs to the
same connected component as zS".

This trick is found in [2].
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In this direction we have the following proposition, which
follows from Theorem 1 combined with a remark suggested to the
author by K. Stephenson.

PROPOSITION 3. For any nonconstant singular inner function
S9 there exists a nonconstant inner function g such that S ~ gS.

Proof. The point is that any singular inner function S is of
the form S = exp (g + l)/(g — 1), with g e F. Theorem 1 gives, then,
the result.

In an obvious manner Proposition 3 implies the following:

COROLLARY 3. ( i ) For every nonconstant singular inner func-
tion S, there exist inner functions f and g such that fS ~ gS but

(ii) Let a) be an inner function such that the relation fa) ~
f2ω implies f ~ f2 for every couple (fu f2) of inner functions f and
f2. Then the connected component of a) contains only Blaschke
products. In particular a) is a Blaschke product.

(iii) If the connected component of an inner function f does
not contain any proper multiple of f, then this component contains
only Blaschke products. In particular f is a Blaschke product.

The existence of infinite Blaschke products satisfying the hypo-
thesis of Corollary 3 (iii) follows from the proof of a theorem of
D. Herrero ([3], Theorem 1.1). Later, the present author proved in
[6] that if the zeros an9 n = 1, 2, of a Blaschke product B satisfy
the condition

lim Π 0Cn — <Λm. = i

then, the connected component for B does not contain any proper
multiple of B.
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