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If p is a prime congruent to 3 modulo 4, it is well-
known that the class number h(—p) of the imaginary quad-
ratic field @Q(v—p) is odd. In this paper we determine i(—p)
modulo 4.

The class number of Q(v'—p) is odd, if p is a prime congruent to
3 modulo 4 (see for example [3:p.413]. D.H. Lehmer [4: p. 9] has
posed the problem of determining the Jacobi symbol (—1/A(—p))=
(=202 that is, of determining h(—p) modulo 4. In this paper
we evaluate h{(—p) modulo 4 in terms of the class number A(p) and
the fundamental unit ¢, = T + UV p of the corresponding real
quadratic field Qv »). It is known that T and U are positive in-
tegers which satisfy T'= 0 (mod 2), U = 1 (mod 2), N(e,) = T* — pU?*=
+1. We prove

THEOREM. If p > 3 is a prime congruent to 3 modulo 4 then
(1) h(—p) = h(p) + U + L(mod 4) .

It is easily checked that (1) does not hold for »p =8 (A(—38)=
h@) = U =1). (p=31is a special case as this is the only value of
p = 3(mod 4) for which the ring of integers of Q(/—p) has more
than 2 units.) The method of proof is purely analytic in nature, it
uses Dirichlet’s class number formula (in various forms) for both
real and imaginary quadratic fields and also some results from cy-
clotomy. It would be of interest to give a purely algebraic proof.

Proof. Let p > 3 be a prime congruent to 3 modulo 4 and set
0 = exp(2ri/p). For z a complex variable, we let

(2) Fo=1 G- F@= 1 -0,
so that
(3) F.@F_(2) = F@),

where F(z) is the cyclotomic polynomial of index p, that is,
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—1

1 =242+ 424+ 1.

(4) Fe) =Tl —0) = £

F. and F_ are polynomials in z of_gegree (p — 1)/2 with coefficients
in the ring of integers of Q(1/—p) (see for example [6: p.215]).
Hence we can write

(5) Fu(@) = % (Y(@) — Z@&/—p), F_(2)= —.( Y() + Z&n D),

where Y and Z are polynomials with rational integral coefficients.
From (3) and (5) we have

(6) Yz} + pZ(z) = 4F(z) .
It is also known [6:p.216] or [7:p.209] that ¥ and Z have the

symmetry properties expressed by

(p=3) 14 (p—3) 14

(1) Y@= 3 @@ =2, Z@)= 3 0@ 42,

=0

where the a, and b, are integers with
a=2,a,=1a =3 —p)/4,-

and

bo=0,b,=1b= 1<1+<i)>,

(see [7] for further values of «, and b,: see [6] for a table of values

of Y and Z for p < 29).
Differentiating the expressions in (7) and (6) with respect to z,

we obtain respectively

(8) Y'(z) = (:—;zm a, <<p ; 1 n>z(p~3)/2—-n _ nzn~1> ,
R N ((E R p—

and

(9) Y@)Y'(z) + pZ(2)Z'(z) = 2F'(z) .

Taking z = ¢ in (7) and (8) we obtain

(1 —1),if »p =3 (mod 8),
A, (1 +1),if p =17 (mod 8),
—B;1 + %), if p =3 (mod 8),

B(1 —1),if p =17 (mod 8),

Y(z) = {
(10)
Z() = {



THE CLASS MUMBER OF Q(+~/—p) MODULO 567

and
o C, +2D,,if p =3 (mod 8),
a @)= {07 + 2Dy, if p =17 (mod 8),
70) = {Es + 2F,,if »p =38 (mod 8),
E, +2F4,if p =7 (mod 8),
where A4,, ---, F, are rational integers (given in terms of the a, and

b,). Using (10) and (11) in (6) and (9) with z = 7, we obtain

(12) {A; — pBi=—2,if p = 3 (mod 8),
A — pBi:=+2,if p =7 (mod 8),
and
(13) {AaCs + 2pB,F;=—1,2A,D;, — pB,F, = p,if »p =3 (mod 8),
AC, + 2pB,F, = p, 2A4,D, — pB.E, =1, if p =7 (mod 8) .

Clearly from (12) and (13) we see that A4,, B,, C,, E,, A;, B,, C, and E,
are all odd. Now Liouville [5: p. 415] has shown that

(14) Z2R)Y'G) — Z'(R)Y(z) = flz ( )z 1
Taking z = 4 in (14) we obtain

(15) Z@Y'(G) — Z'6)YE) = (L + M) + il — M),
where

- {(p—1) ; . (p—1}/2 . ; > 1
B () =g ()

Applying the transformation j — (p — 1)/2 — 5 to L or M we obtain
L =M. Also we have

L = (p;z:‘;“ <%) (p;z:.'i:))u (4—in2>
(2 ; (p=1)/2 - _a
S A Y R R RSy

VY J=(p+1)/4 D

(p—1)/2 y (p=1)j2 y
232 ()
y i=(e+0/4A\ND J=t »

so, by Dirichlet’s class number formula (as » = 3(mod 4), » < 3) see
for example [2: p. 346], we have

2(

(16) L=M-= {2 — <%>}h(——p) :
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Hence from (15) and (16) we have
an ZE)Y'(3) — Z'0)Y(E) = 2 {z — (E)}h(~p) .
P

Using (10) and (11) in (17), after equating real and imaginary parts,
we obtain

18) {3h(—p) = 2B,D, — A,E,, if p =38 (mod 8),

h(—p) = 2B.D, — AE,, if p=7T (mod 8).
Now from (13) we have

(19) {E’sz —2A,B,D, — B, (mod 8),if p =3 (mod 8),

E,=—2A4,B,D, + B, (mod 8),if p =7 (mod 8) .
Using (19) in (18) we have

_ (—A;B; (mod 4),if p =3 (mod 8),
@0) M=p) = {-A,B, (mod 4),if p =7 (mod 8) .

From (4) we have F(i) = 1, and so taking z =4 in (2) and (3)
we obtain

F_ (’L) H (1 + 30%)" (§/p)

il () = iz

= exp

VEE (et R GR G

( 4
exp (h(p)log(T +UV'p) + 7;"( (2 )) h(—ﬁo)>

I

= (T + UV p)r»gu=@eh=n
= (=1)@+4(T + Uvp)e

where we have made use of the Gauss sum

=) =),

and the two results
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s (ﬁ)ﬁ:ﬂ”_ - JL((E) _ 1) h(—p)
w=si\p/ m Vip\\p

S (2m 41\ (=)™ _ h(p) —
(3 g = Blog(T + UV'B),

and

which follow easily by standard arguments from Dirichlet’s class
number formula (see for example [2: p. 343]). Hence we have (using

(10))
(T + UVPY® = (—1)e-94F (i)
- <—1><r-3>/*¢%(y<i) + Z(i)WE)}Z

—Z-}(As + BV p),if p=3 (mod 8),

14, + By p)if p=17 (mod 8).
2

This is essentially a result of Arndt [1].
Expanding (T + U1 p)"® by the binomial theorem and equat-
ing coefficients of 1/ p, we have as h(p) = 1 (mod 2),
Uh(p)p(h(p)—l)/z + (h(p)>Uh(p)—szp(h(z')~3)/2 + e
2

{Ang, if p =3 (mod 8),
A,B;, if p =T (mod 8) .

As T=0 (mod 2), U =1 (mod 2), this gives

U(— 1)t = {A3B3 (mod 4), if » = 3 (mod 8),
~ |4,B, (mod 4), if p =7 (mod 8),
so that
1) h(p) = {Ang — U+ 1 (mod 4),if p =3 (mod 8),
"= A:B, — U+ 1 (mod 4),if p =7 (mod 8).

Putting (20) and (21) together, we obtain (1) as required.

From (1) we have (—1/h(—p)) = (—1HCP-02 = (_1)*@+02  Tp
particular whenever A(p) =1 (a common occurrence) we have
(—1/h(—p)) = (=D~

In [8] the author has treated, in a similar way, Lehmer’s ques-
tion [4:p. 10] regarding hA(—2p) modulo 8, when » is a prime con-
gruent to 5 modulo 8.
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