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PINCHERLE BASES

F. HASLINGER

Recent results on Abel-Goncarov polynomial expansions
are applied to study the representability of holomorphic
functions as infinite series in a given Pincherle sequence.
As a generalization of the ordinary derivative we consider
the so-called GeΓfond-Leont'ev derivative £%. We take the
exponential function with respect to the derivative & and
use a duality principle in order to investigate the complete-
ness of the system En{z) — znE(λnz) in the space &*τ of
functions holomorphic on the interior of the disc of radius
r ^ co. Finally we study the uniqueness of the representa-
bility of holomorphic functions as infinite series in the
system En.

1. Basic facts and definitions• Let 0 < r ^ co. We shall be

interested in the nuclear Frechet space Jfr consisting of all functions
holomorphic on the open disk of radius r, equipped with the topology
of uniform convergence on compact sets (see [15]). For the topology
in the space ^~r9 we can take the norms || ]|r/, 0 < r' < r given by
| | / | | r , = max{|/(s)|: \z\ = r'}, fe^r. It is easily seen that by
Cauchy's estimates that system of norms {|| ||r', 0 < r' < r} is equi-
valent to the system of norms {||| |||r', 0 < r' < r}, where

for feJK with Taylor series expansion

/(») = Σ akz
k .

k=0

We recall t h a t two systems of seminorms {\\ \\p, p e P} and {|| |Ί1U

peP] are equivalent, if for each p e P t h e r e exists a constant Kv

depending on p and qe P such t h a t || \\p ^ Kp \\\ | | | f f, and if for each

p' e P t h e r e exists a constant Kv> depending on p' and q' e P such

t h a t | | | .HI,, ^ ^ H l l ^
A sequence (/w)«=0 i

n ^ 7 is complete if the set of all finite linear
combinations of the functions fn is dense in .β^.. And (/*)*=0 is a
basis in JK if each / e ^"r has a representation

where (cΛ)^0 is a sequence of scalars uniquely determined by / and
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the infinite series converges in the topology of j^r. Two bases
(Λ)n=o and (flOϊU are equivalent if Σ«=o c»/» converges in &~τ if and
only if ΣϊUc»ί7» converges in ^~ψ. As is well known, the sequence
of the functions (zn)ζ=0 constitutes a basis for any space ^ ( 0 <
r <: oo). A basis (/n)»=0 is called proper if it is equivalent to (sΛ)»=(>
(see [1], [4]).

M. Arsove [1], in a series of papers, has considered Pincherle
sequences (/*)«=<> i n which /Λ has the form

fn{z) = znψn(z) , n = 0, 1, 2,

where each function ψnej^r and ψ^(0) = 1. Recently, in [1] Arsove
and in [4] Dubinsky studied linear Pincherle sequences (see also [9])

Λ(s) = z*(l - — ) , n = 0, 1, 2, .

In this paper we investigate the problem of determining when
a system

En(z) = znE(Xnz) , rc = 0, 1, 2, •

is complete in ^ , when it is not complete and when it is a basis,
even a proper basis in ^ > Here (λn)»=0 is a sequence of scalars
and E is a generalized exponential function corresponding to a
so-called GeΓfond-Leont'ev derivative Sf (see [8]).

Let (dk)t=i denote a nondecreasing sequence of positive numbers.
The GeΓfond-Leont'ev derivative & is defined by

= Σ
k = l

where

As in [21 or [7] we suppose that the sequence (dk)t=1 satisfies the
following condition

(1.1) (dk+1/dk)^==1 is nonincreasing and has limit 1 .

Then it follows

lim <Zi'* = 1 .

Thus if / has radius of convergence c(f) then
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= Σ d.
k

has also radius of convergence c(f).
The operator 3f corresponds to the ordinary derivative when

dk — Jc (fc = 1, 2, ) and to the shift operator Sf when dk = 1
(k = 1, 2, , •). ^ is defined by

Jfc=i

The operators ^ w (n = 1, 2, ) are the successive iterates of 3f
and we have

Σ &=±akz
k-* ,

k e

where e0 = d0 — 1 and en = ( d ^ c2») * for w Ξ> 1.

We w r i t e

#(*) = Σ «*«*

and note that this function bears the same relationship to the
operator 3f that the exponential function bears to the ordinary
differentiation. This means

E(β) = 1 and 3>E(z) = E{z) .

Let JB = c(E), then, by the monotonicity of the sequence (dk)k=x we
have (see [2])

R = lim dk = sup dk .

The E-type of a function /(«) = Σ?=o ̂ k^k is the number

^•J?(/) — l ί m sup I α̂ /βfc \υh .

If J? < oc then

(1.2) τE{f) - - ^ . , (see [2], [7]).

Now we define for a sequence (λΛ)JL0 of scalars the polynomials
Qn(z*> \, , ̂ Λ-I) by Q0(z) ΞΞ 1 and

= β»«n ~ Σ β̂ -jfcλ ^Qib^; λ0,
A0

It is easily seen that
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(1.8) eX = Σ en_kXΓ"Qk(z; λ0, , λ ^ ) .

The polynomials Qn(z; λ0, , λΛ_x) are called the Goncarov polynomials
belonging to the operator 3f (see [2]). They reduce to the ordinary
Goncarov polynomials if dk = ft (fc = 1, 2, •) and the remainder
polynomials if d& = 1 (ft = 1, 2, •)•

One verifies easily that

(1.4) ^ * Q (λ*; λo, , λ ^ ) = δnk (see [2j) .

Therefore the polynomials Qn(z; λ0, •• ,λΛ_1) are biorthogonal to the
linear functionals

Now we consider the problem under which conditions the polynomials
Qnfa \); * ,λw_1) constitute a basis in ,^7, i.e.,

f(z) - Σ
Λ=0

for each / e . ^ and the infinite series converges in the topology of

In this connection the Whittaker constant W(^) belonging to
the operator 3ί plays an important role. We can introduce the
Whittaker constant W(&) by

where

Hn - max \Q%(P; λ0, , Xn^)\ (n = 1, 2, •)

and the maximum is taken over all sequences (Xk)t=l whose terms lie
on the unit circle (see Buckholtz and Frank [2]).

The Whittaker constant satisfies the inequality (see [2])

(1.5) 0 < z± S W(&) < d, .
2

In [7], Frank and Shaw investigated the above problem and the
following theorem is an easy consequence of their Theorem A in
[7]:

THEOREM A. Let (λj~=o be a sequence of complex numbers such
that

\ I <C ^tt+i g % — 0 1 2
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for a real number s > 0. Then the Goncarov polynomials constitute
a basis in any space J?~r for

r >

The following theorem, which is again an easy consequence of
a theorem due to Buckholtz and Frank [3], shows that Theorem A
is sharp in a certain sense:

THEOREM B. Let r and s be positive numbers such that

s >r.

Then there exists a holomorphic function F of radius of convergence
r such that &nF has a zero in \z\ S (en+Jen) s for all but finitely
many n.

In the following we will use Theorem A and Theorem B and
two duality principles for J^r in order to investigate the behavior
of the Pincherle sequences

En(z) = z«E(Xnz) n = 0, 1, 2, ,

where E is the exponential function belonging to the operator 3f
and (λΛ)»=0 is a given sequence of scalars.

2 Completeness of the system {znE(Xnz)}. Let E e S/r

R

(0,< R < oo) with the power series expansion

E(z) = Σ ek%k a n d l i m s u p \ek\
1/k = — .

We suppose that e0 = 1 and ek > 0 for k — 1, 2,
In the sequel, we will always require that the sequence (efc)£=0

satisfies the following conditions:
(2.1a) (eJfe_1/efc)*=:1 is nondecreasing;
(2.1b) (βfc/efc_1efc+1)ϊL1 is nonincreasing and has limit 1 (compare

(l.D).
From condition (2.1a) we have

•i

lim
fc-oo

since ~~ ^
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THEOREM 1. Let (Xn)ζ=0 be a sequence of complex numbers such
that

Xn I ̂  s n = 0, 1, 2, •

for a real number s > 0. Then the system {znE(Xnz)}^ is complete
in any space ^ r for R/r ^

Proof. Here we use the following well known form of the
Hahn-Banach theorem: A subset G Q j^~τ is dense in J^r if and only
if for each continuous linear functional L on J^r such that L{g) = 0
for each g e G it follows that L = 0.

Let {(efc)Γ=o, ?'} denote the space of all holomorphic functions
h{z) = Σ^= o hkz

k with the property

limsup \hk/ek\
ί/k < r .

This means that the functions h e {(ek)ΐ=0, r] are holomorphic on the
disk I z! <i i2/r, since

lim sup I hk/ek \1/k = R lim sup | hk \
1/k < r ,

A;-->oo k-.oo

and on the other hand that the function

is holomorphic for \z\ ̂  r.
A duality between J% and {(βfc)£U, }̂ is defined by the bilinear

forms

(2.2) <<7, h) = - L ί g{z)hE{z)dz ,
2π^ Jr

where ^ e ̂ , Λ € {(ê Γ̂ o, W and 7 is a circle contained in the inter-
section of the domain of holomorphy of g with the domain of
holomorphy of hE.

Formula (2.2) gives the general form of the continuous linear
functionals on J^r (see [6] or [12]).

Now let L 6 .βr'r such that L{En) = 0 f or n = 0, 1, 2, , where
En(z) = znE(Xnz). Then there exists a function h e {(ek)ΐ=0, r) such
that

z*E(\J)KE{z)dz = -L ί
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By condition (2.1a) and inequality (1.5) we have

\K\ S ^^s £ el8 < J **

which implies that En e ^r

r for n = 0, 1, 2,
Since

H= flimsupl^l1'*)""1 >
A-co / γ

the assumption R/r ^ s/W(&) implies that the corresponding
Goncarov-polynomials constitute a basis in J^π (see Theorem A). By
the uniqueness-property of a basis we have h = 0 if &'nh(Xn) = 0
for % = 0, 1, 2, . Now it follows L = 0, which completes our proof.

In the next theorem we show that Theorem 1 is sharp in a
certain sense:

THEOREM 2. Let r and s be positive numbers such that se1 <
R/r < s/W(&). Then there exists a sequence of complex numbers
00«=o with the property

such that the functions En{z) — znE(Xnz) are in <yr

r but are not
complete in J^r.

Proof. We have to show that there exists a continuous linear
functional Lo Φ 0 on S^τ such that L0(E.n) = 0 for n = Q, 1,2, ,
where

En(z) = znE(Xnz) for n = 0, 1, 2,

and (λΛ)»=0 is a suitable sequence of complex numbers. In view of
the proof of Theorem 1 it suffices to show that there exists a
function

hQ e {(ek)ΐ=Q, r)

such that £^nh0(Xn) = 0 for n = 0, 1, 2, and h0 ^ 0.
In order to find such a function hQ we apply Theorem B: by our

assumption

r

we can find a number HQ such that
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JΛ> ., -f-r -- S

and by Theorem B there exists a function h0 with c(fc0) = HQ such
that &nh0. has a zero in

for all but finitely many n.
This implies that we can find a sequence (λn)ϊ=0 of complex

numbers with

for w = 0, 1, 2, such that | &nh0(Xn) \ < °o for 0 ^ % ̂  iV (take
for instance λft = 0 for 0 ^ n ^ N) and ^wfe0(λ%) = 0 for n > N,
where N is a suitable natural number. Since exs < jβ/r, we have
I λΛ I ̂  (enΛ Jen)s ^ eλs < i2/r, which implies that En e ^ 7 for w =
0,1,2, «...

Now define a polynomial p0 by

pQ(z) = Σ ^ X ( λ J Q . ( ^ ; λ0, , λ^,) .

Then p0 is a polynomial of degree not greater than N and has the
property

0 £n^N ,

and &np0(X*) = 0 for n > N (see part 1).
We set now

then

&nh0(Xn) = 0 for % = 0, 1, 2, •

and c(feo) = Ho.
If we write

ho(z) = Σ feo,*«fc ,
A;=0

then

lim sup |feo,fc/βfcl1/fc < r ,

since jff0 > R/r. This means Λo e {(ek)ΐ=0, r}. So if we set
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L0(g) = (g, h0) = - — \ g(z)(ho)E(z)dz ,

then L0(En) = 0 for n = 0, 1, 2, and Lo Φ 0.

The desired conclusion now follows again from the Hahn-Banach
theorem.

3* Uniqueness of the representation by the system {znE(Xnz)} +
The purpose of this part is to derive conditions under which the
system {znE(Xnz)} constitutes a basis in its closed linear hull in a
certain space J^. In order to do this we use a dual relationship
between basis theory and interpolation theory developed by M. M.
Dragilev, V. P. Zaharjuta and Ju. F. Korobeinik in 1974 (see [4]):

Let X be a nuclear Frechet space with a topology given by a
family of seminorms {|| ||p, p e P}; let Xf be the strong dual space.
We consider two sequence spaces generated by a sequence {xn}n=.o °f
nonzero elements of X:

& = \c = (cn)ΐ=Q: \e\p: = Σ*\cn\\\xn\\p <<*> , f o r e a c h p e p \

)
Σ*\cn

n—0

with t h e topology determined by the family of seminorms {\c\p, p e P),

and

gf' •= \c' = (c'n)^: t h e r e exists a p e P w i th \c'\'p: = sup -J-^L < co

with the topology of the strong dual with respect to duality, given
by the formula

THEOREM C. (See [4], [12].) Let X be a nuclear Frechet space.
A sequence {xn}n=Q constitutes a basis in its closed linear hull in X
if and only if for each sequence ( ί j ^ e g " there exists x'eXr such
that

%'(xn) = tn for ra = 0, 1, 2, - .

(In this case one says that the interpolation problem (X\ {xn}n=o) is
solvable).

In the sequel we use Theorem C for the system En(z) = znE(Xnz)
considered in part 2.

THEOREM 3. Let (λj^o be a sequence of complex numbers such
that
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•s n -

en the system {znE(Xnz)}n
with the property Rlr ^

- 0 , 1 , 2, • • • .

=o constitutes
s/W(&).

Proof. In order to apply the above principle we remark that
Theorem C says that {En}n=0 constitutes a basis in its closed linear
hull if and only if for each sequence (On=o with the property

(3.1) \tn\ ^K\\En\\r, n = 0 , 1 , 2 , . . . ,

where rf < r and i£" is a constant only depending on r', there exists
a continuous linear functional L e ̂ J . represented by a function
Λ € {(βfc)fc=o, ^} s u c h t h a t

L ( ^ ) = (En, h) - ^ λ(λ J - tn ,

for % = 0, 1, 2,

We take a sequence (ίΛ)?=0 such that inequality (3.1) holds. Since
the systems of norms (|H|r>, r' < r) and (||| | | | r ', r' < r) are equivalent
in <β\., inequality (3.1) can be replaced by

(3.2) \t%\£ Kr'» sup (ek\Xn\
kr'k) n = 0, 1, 2, .

k

This follows from the fact that

En(z) = z " ± ek\
k

nz
k

k=0

and by the definition of the norms HHIIr'C?*' < r). Now we obtain

sup^lλJV*)

k _J

By inequality (1.5) and the assumption ί?/r >̂ 8JW(Z&) we have
I λ. I < iϊ/r for n = 0, 1, 2, . This means En e ^~r for n = 0, 1, 2, ,
and

sup felλJV*) ^ sup
k k

Since (R/r)rf < i2, we have

sup (e^Jrή < KE ,

where KE is a constant depending on i£.
This implies

lim sup I tn \1/n ^ r' .
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Now we obtain

lim sup I entn \ί/n ^ (lim sup ei'*)(lim sup | ίΛ \UA £ — .

By Theorem A the Goncarov-polynomials Qn(z; λ0, , λΛ_x) constitute
a basis in ^Blr>, since

r' r

Consider the polynomials

e^Qnfa λ0, , λΛ_x)

since

β^QΛs; λ0, , λ^,) = z*-*£ ^tXΓkQk(z; λ0, , λ*^) ,

(see 1.3) it follows that the bases {e^Q^z; λ0, , λ^.JJ^o and
are equivalent in ^Rlr^ i.e.,

converges in ^ ^ / r / if and only if ΣΛ=<>CΛSΛ converges in J^Rir> (see
[14], pg. 188).

Now since limsupw_oo \entn\
1/n<Lr'/R, we have Σϊ= 0ent««* converges

in J ^ v , and therefore Σ?=o <*Q («; λ0, •• ,λn_1) converges in
in other words: there exists a function k ^ such that

= *• n - 0, 1, 2,

The fact that h e ^Rir> implies that for

Λ(s) =

we have

lim sup l^l17

and hence

lim sup
l/fc

<r .

This means ft 6 {(ek)u=0, r}; now by the representation of the continu-
ous linear functionals on ^~r we see that there exists a continuous
linear functional L e J^l such that
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L(En) = (En, h) = &*h(\n) = tn w = 0, 1, 2, .

Theorem C implies that the system {En}n=0 constitutes a basis in its
closed linear hull in J ^ , by Theorem 1 the system {En}n=o is complete
in ^ , so {En}n--=o constitutes a basis in JΓT and the proof of Theorem
3 is finished.

By [14] it follows that the system {znE(Xnz)}*=0 constitutes a
basis in J*\ which is equivalent to the canonical basis {zn}ζ^. We
remark that under the assumptions of Theorem 2 the system
{znE(Xnz)}^0 does not constitute a basis for ^rf because the system
{znE(Xnz)}n^0 is even not complete in J?"r.

Some other results of this kind can be found in [11], [12] or
[131 (see also the references in [11]). But these are all sufficient
conditions for a system {znf(Xnz)}^0 to be a basis in J^r and there
is no similar result to Theorem 2.
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