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ROBERT MARCUS

In this paper we study a stochastic partial equation of
the following form.
ou 4,

— 100 __
e 1/2 e Sw)+a(z, t)

where f is a monotone nonlinear operator and « is a
‘““white noise’’ process in ¢ and ¢{. In a previous paper
we demonstrated the existence of a unique solution in a
generalized sense for z in a bounded domain. This solution
was decomposed into the sum of a statiomary process and a
transient process. An explicit representation was found
for the stationary distribution of the stationary process.
If f is an ordinary function of u(x) then the stationary
distribution is associated with a Markov process in . The
purpose of this paper is to remove the restriction of bounded-
ness for the bounded domain.

The motivation for this study was to establish a link between
stochastic partial differential equations and constructive quantum
field theory. The basic idea is that the stationary distributions of
certain stochastic partial differential equations will be Euclidean
Markov fields. See Nelson [3]. For an example see Appendix.

1. Definitions. The equation studied is formally

(1) e, t) = %—u(w 1) — Nz, ©) — fu, £) + alz, t)

(xe(-——o«o, +OO), A > 0)
and for convenience u(x, 0) = 0, a(z, t) is a “white noise” process i.e.,
Ela(z, Ya(y, 8)) = olx — y)o(t — s).
Converting (1) to an integral equation
tetoo
(2) ) =— || 6 -5 2 0, Hdvds + W, 0
with
Gyt — s, x, y) = exp (=Nt — (& — ¥)*/2(t — 5))/V2r(t — ) .

Wiz, t) is a Gaussian process with mean 0 and covariance equal to

BE(W(z, ) W, 5)) = Smm(t’”Gl(t 45— 2r, 7, Y)dr
formally
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tr+o
Wz, t) = S S Gt — s, x, y)a(y, s)dyds .
0J—co

In addition the following conditions are required on f: R*—R':
(1) (fw) — f)Nw —v) > e lu — v
(i) [f)]* <e(lul? + 1)

with ¢,¢,>0,p> 2, and ¢ = p/(p — 1).

DeriNITIONS. Let L7 be the Banach space with norm
defined by

l"ok

lu(@) |2 = gm exp (—k|x]) | u@) |2, with 0 < k/2 <\ .

Let L{ be the dual space with norm |-|%.
Let B, be the Banach space with norm |-|, satisfying

= S lulndf. Let Bf be the dual of B, with norm |-|f.
0
LEmMMA 1. W(x, t) € B, almost surely.

Proof. E(W, t)) = S:G;_(zt — 2, x, w)dr
= S: exp (—2\) [V dxr dr
< S:o exp (—2\)/V dmr dr < oo .
From the Gaussian properties of W it follows that

+O°
E(S? exp (—k |z))| Wi, t)l”dx>< o0
uniformly in ¢ and hence E(| W) < oo .

Then Chebyshev’s inequality can be used to complete the proof of
the lemma.

The method of solving (2) will be to construct a sequence of
approximations wuy(x, t) that converge to a solution. Let G(¢, =, ¥)
satisfy

0Gy
ot

0*Giy
ox’

- XZG].N .

o |~

G 2, ¥) =0 for || =N or |y|=N and Gui(0,2,y) = o — ).
Using the reflection method it is easy to show that

0 é Gi(ty x, y) - G/'.N(t’ x, y) é Gi(ty X, 2N - y) + Gi(ty z, ——2N - y) .
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Then u,(x, t) will be the solutions of
tC+N
(8)  une, ) = —| | Gunlt — 5, 0, 1) (wa(y, Ndyds + Wiz, ) .

2. Results.

THEOREM 1. FEquation (8) has a unique solution uy for each N
almost surely satisfying Uyl < ¢ where ¢ is independent of N.

Proof. This theorem follows from Theorem 1 of Marcus [2] and
an estimate similar to Theorem 26.6 of Vainberg [5].
The results of Marcus [2] are not applicable to equation (2)
because in general e B, does not imply that
T+
L et —s, o n)futy, 9)dyds

is in B,. However it will be shown by a series of lemmas that
the solutions of (3) converge in B, as N — o to a solution of (2).
Let
t(+N
@, &) = — | | Garlt — 8, 5, 1) f(wnly, $)yds + Wiz, 1)
and
te+M
wa@, ) = = | | Gualt = 5,3, )/ (walw, 8)dyds + Wia, ¥
with M > N.
te+N
(4) =g = = {7 (@untt = 5, 2, 9)(ft0) = fw)duds
te+N e+
{1 G~ Gt @adyds = [ |7 Guntt—s, 2, ) 7w dyds
if—N
~\1 Gt~ 2, wrwodyds.

Multiplying by exp (—k|z|)(f(uy) — f(uy)) and then integrating

(5) S:Si: exp (—k|x)(f(ur) — f(uw)(uy — ux)dadt
- S:Si: exp (—kfa )(f (uy) — S (ux))
x [Right hand side of (4)] duxdt.

LEMMA 2. Left hand side of (5) = c¢{uy — uy|? for some ¢ > 0.
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Proof.
H i: exp (—k |2 )(f(uy) — flu)) (U — wy)dadi
2 o | exp (=l g — wyPdodt = ¢luy — ulz

LEMMA 3. Expand the expression on the right hand side of (5)
the first term 18 monpositive, i.e.,
T+ LN
IV exp (—hlaD) = fa(] ] Guwte—s, 2 (@, »
(6) - -
— Flu(y, s)))dyds)dxdt <o0.

Proof. Let
Vi, ) = || Gunlt — 5,5, 1) (usty, 9) ~ Flaaty, 5))dyds .

Then V, = (1/2)V,. — NV + fuy(zx, t)) — fluylz, t)) with Viz, t) =0
if |2/ =N and V(z, 0) = 0. Rewriting the left hand side of (6)
using V and then integrating by parts, the left hand side of (6) is
equal to

— S:gi: exp (—lclocl)( L — —:lé-Vn + VV>V(90, t)dxdt

1 +N T+N
2|, exp (—klz) V¥, T)ds — vg S exp (—klz)) V(x, t)dwdt
— 0 N
1 T(C+N 1 T
—_S g exp (—k|z|) Videdt — —-kg VX0, t)dt
2Jo)-n 2 0
TC+N
+ k2/4g S " exp (= ko) V'@, dudt < 0
0Jd—
since %/2 < ) by definition.
To complete the proof that lim, .. |uy — %), = 0 it is necessary
to show that the remaining three terms on the right hand side go
to 0 as N, M — . The proofs are very similar and therefore only

one will be shown in detail.

LEMMA 4. Almost surely

lim |"|" exp (ol D( ()~ £

M,N s

v X (S:SjGw(t — 8,3, ) f(uM)dyds)dxdt ~0.
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Proof. By repeated use of Holder’s inequality, Theorem 1 and (ii)

| exo (~miah(r@a) — F)(| | Guutt—s, 2, )7 () dyds)dade

ey
=) ~g

| exp (il () — f () )
S S exp (— k\xD(S "Gt —s, @, ¥) f(u, )dyds) dxdt)
Sr:exp( Bl (ul? -+ [wdadt )
(11 exp (—rled| [] ] Gt —s, 5, v) exp wbiiwhay |
<[\ 1ral exp (~atefy [ ds [‘dwat) .
[If %, is chosen so that & > pk, > 0 then almost surely]
= m_w exp (— klz|)

ar 1/p P p
S <SVG§G[(t—s, x, Y)exp (pklly!)dy) ds] dxdt)

(5 oo
(

X
o o~
<

3 S:S‘_: exp (—klx|)
X [:S exp (— oA\ (t—s)) [S: . exp (— p2*2(t—s))/(2x(t — 8))**

% exp (phi(z+a)dz | ds [dvdt)”
=e, (S S exp (— kx!ﬂokx)u exp (—pr(t—s))

x| sup exp (—pat—s)/(n(t — o) |”

(SN exp (— pe*/A(t—5))/@r(t— )" exp (plclz)dz)‘/”p>ds]pdxdt>w
=e¢s (ﬁ exp (— klwl+pkw)ﬁ exp (—pN(t—s))
x| sup exp (—#/at—s)/(2m(t — )" |

- [exp ((t — 8)pld)/ 2t — )P~ ds:‘ dxdt)”"
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IA

Cq (S:rw exp (—klx|+ pk.x) H: exp (— PN (t—s)+ (t—8)ki)

—o

(2 (e~ )=~ - sup exp (—z2/4(t—s))ds1pdxdt>1/p
Z2>N—zx

A

¢r (S: S+N exp (—klx|+ pk.x) U: exp (— PN (t—s)+ (t—s)kd)

—o0
i/p

[@r(t — s))‘”*”/"’ds]p . [51\1p (exp (—pz2/4t))]dxdt)

7 (oo L
e (|| exp (~kinl+ phio) sup (exp (—pejatanar )

where ¢, depends on T and W.
Since sup,.y_. (exp (—pz*/4t)) <1 and k > pk, the Lebesgue domi-
nated convergence theorem can be used to show

lim S: gi: exp (~hlz| + plh) sup (exp (—pa'/at)dadt

N —cc

= STg“f'w exp <—k[x + pklx) %\im Slia_p (exp (_pz2/4t)>dxdt =0.
0 Voo 2>N—2

—oco

LEMMA 5. Almost surely

tim | exp (—hloD(u) ~ £

M,N—oo

% (S:S:zGM@ — 8, %, Y)f () dyds)dxdt ~0.

Proof. The proof is almost identical to Lemma 4.

LEMMA 6. Almost surely

lim H:: exp (—k |z )(f (uy) — F(t))

M,N-—-c0 J0

(1] @it = 5,2, 9) = Guitt — s, 2, W) Fwdyds)dodt = 0 .

Proof. The proof is similar to that of Lemma 4. However
the estimate Giy(t — s, ¢, ¥) — Gt — s, 2, ¥) < Gi(t — s, 2, 2N — y)+
Gt —s,x, —2N — y) + Gt — s, ¢, 2M — y) + G,(t — s, ®, —2M — y)
from the reflection method is used to complete the proof.

THEOREM 2. Lim,_. uy ewxists in B, almost surely. Also if
u = limy .., Uy then |u(-, t)|,, <ec¢ almost surely for almost all t.

Proof. From (5) using Lemmas 2,3,4,5,6 |uy — u,|; is less
than or equal to the sum of expressions whose limit as N, M —
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is 0. Hence uy is a Cauchy sequence in B,. Since |uy(:, )] <c¢
almost surely by Theorem 1 the same bound applies to « for almost
all ¢.

LEMMA 7. u(z, f) = — S:giw@(t — s, x, ¥)fw)dyds + Wz, t).

Proof. Since uy = —gtﬁ(}m(t — 5, m, ¥)fuy)dyds + Wiz, t) it is

0
only necessary to show tha

lim
N-soo

it+N t 4o
1 autt—s, 0, v dyas—{ |Gt —s, 2, radvas | =0.

0

LN t+oo
(8) |17 Gutt — 5,0, v)r@ndvas - {76, — 5, 0, w)700ayds
tr-+N
=] Gutt — 5,2, () = F)dyds
iC+N
{17 @antt = 5,5, 9) = Gutt — 5, 0, W) F ()i
tro (N
— (e — 5,0, nr@adyas — (|7 Gt — 5,2, w7 duds .
As N--» co the limit of each term on the right hand side of (8)
can be shown to be 0. The limit for the first term follows from
Theorem 2. The second term requires an estimate identical to

Lemma 6. Finally the last two terms can be shown to have limit
0 by the methods of Lemmas 4 and 5.

LeMMA 8. wu is the unique solution of (2) in B,.
Proof. Let v be another solution of (2). Then

p= — g‘gf“’aza — s, 2, Y)f(v)dyds + Wi, 1) .

0.

Hence

t

|6t — 5,5, )(F) — f@)dyds

w—v=-|
0

and
§ S exp (—k|z)(f(w) — fF@)(u — v)dudt
B H: exp (—k|z)(f(w) — F(v))

><< - StSi:GZ(t — s, 2, W)(FW) — F®)) dyds)dxdt :

0
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Using estimates similar to those in the proof of Lemmas 2 and
3 it follows that | — v|2 < 0 or u = v.

In order to investigate the stationary distribution of % as ¢—o
a sequence of approximations %, must be constructed. Let Wy(x, t)
be the Gaussian processes with mean 0 and covariance

E(Wy(z, 1) Wi(y, s))
_ Smm (t,s) §+NG2N(t 2, Z)GZM(S —r, Y, Z)dZd’r(M = N) .
v

0

Also
E(Wy(x, 1) W(y, s))

min (£,8) (+N
= g S Gt — 7, 2, 2)Gy(s — 7, y, 2)dzdr .
-N

0

Formally
tC+N
Wiz, t) = S S Gt — 5, 2, Waly, s)dyds .
0J —N

Note limy.., | Wy(z, t) — W(x, t)], = 0 almost surely follows from the
convergence of covariance for Gaussian processes.

LEMMA 9. The equation
R E+N .
= = || Gutt — 5, 3, w1 @AYds + Wata, 0
has a unique solution with |iy|.. < c.

Proof. The proof is identical to Theorem 1.

LEMMA 10. limy__ |Juy—y|,=0 almost surely. Hencelimy . liy=u
almost surely.

Proof.
wy = @ = || Git—s, 2, ()~ F@AYds+ Wie, )= Wila, 8.
Then it follows
1 exp (< laD(F () = F@) o — ay)dadt
- S S exp (—kle))(f (ux) — f (@)
X S:SZGz(tﬂ, @, ¥)(f(uy) — f(@y))dyds

+ g S: exp (—k|ax)(f(uy) — f@)) (Wi, 1) — Wylx, t))dxdt .
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Once again using the methods of Lemma 2 and Lemma 3 it

follows that

lim Cluy""‘alv Ip

N0

= tim || exp (~Biah(7 () — £ (@) (Wia, )= Wate, O)dadt=0

N-oo

almost surely which implies limy.,, 4y = limy_. uy = u completing
the proof.

Using the methods of Lemma 2 through Lemma 9 of Marcus
[2] it can be shown that #@,(x, ) = Ry(x, t) + Vy(x, t) where R, is
a stationary process on B, and V, satisfies

E(S+°°V5(x, £) exp (—klx{)dx) < ¢, exp (—a,t)
where ¢, ¢, > 0 are independent of N.

LemmA 11. R =lim,.. By exists in B, and 1s a stationary
process on LA.

Proof. The proof is identical to that of Lemma 8 of Marcus
{2]. Define V =u — R.

LEMMmA 12.

lim E(Si: exp (—k|z|) V¥, t)dm) =0.

t-—00

Proof. The proof is identical to Lemma 9 of Marcus [2].
THEOREM 3. The unique solution of
oo
w@, ) = —| | "Gt — 5, 3, W) f (uly, )ds + Wia, B
0J—~o

can be represented as u(x,t) = R(x, t) + V(x,t) where R(x,t) is a
stationary process on L} and

limE<Si: exp (—k|z|) Vi, t)dx> 0.

t—co

Proof. This follows immediately from Lemmas 10, 11, and 12.

The next problem is to obtain information about the stationary
distribution of R using Ry. Let F(u) = S f(v)dv. Note 0 < F(u) <
[}
c(lul? + |ul) follows easily from properties (i) and (ii) of f.
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LeMMA 13. The stationary distributions of Ry have a Radon-
Nikodym derivative proportional to exp< — ng(uON)dx) with 7re-
spect to the Gaussian measure on uONeL,;;N with mean 0 and
covariance S:G;N(Zs, x, Y)ds.

Proof. This result is proved in Lemma 10 of Marcus [2].

LEMMA 14. Let w,c L} be a Gaussian random wvariable with
mean 0 and convariance

Blu@u®) = | Gi@t, @, y)dt =+ exp (~1]o — ) .

Let g be a bounded continuous function on L. Then

B(g(R)) = lim Eg(w)) = lim B(gu)exp( — | Fu)dz))

/E ( exp( — SjF(uo) dz)) .

(Note that the covariance of u,(x) vs equal to lim, .., E(W(x, t) W(y, 1))=
lim, ., limy ... E(Wy(@, 1) Wx(y, 1)) = limy ... E(Wox(®)%ox(¥))-)

Proof. Since limy..RBy =R and lim,.. |4 — R|=0 in mean
square, it follows from the bounded convergence theorem that

. . +N
E(g(R) = lim B(g(w) = lim E(g(us) exp ( — | Fluonda))
t—co N—oo —-N
+N
[B (exp (= | Fuonda)) = lim Bg(®y) -
Since as random processes on [N, +N] and also in LI, wugy

converge weakly to u, then by bounded convergence using the
growth condition on F' it is possible to show that (see [1])

i a0~ [t ) e~ [ s
= }VIE E(g(uo) exp ( — S:J:F(uo)dx >> / E ( exp ( — gjﬁ‘(uo) dx))
which completes the proof.

Ini conclusion it is interesting to note that the stationary distri-
bution of R is never absolutely continuous with respect to the sta-

tionary distribution of W(zx, t) since limy._,., E( exp (—— SWF(uo)dx»:O.
~N
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APPENDIX. Let f(u) =u’. Then conditions (i) and (ii) are
satisfied with p = 4. The results of this paper can then be applied
to the equation:

~1du
2 ox?
(—oo <2 < o and ux, 0) = 0) .

(9) %;i(x, t) (x, t) — Nulxe, t) — w¥(x, t) + alx, 1)

a(z, t) is a “white noise” process i.e., a generalized Gaussian random
process satisfying formally FE(a(z,t)) =0 and E(a(, t)a(y, s)) =
o(x — y)o(t — s).

From Theorem 2, Lemma 7 and Lemma 8, equation (9) has a
unique generalized solution u(z, t) satisfying

('] exp (~Heboito, e < =

almost surely for some % > 0. From Theorem 3 and Lemmas 10, 11,

12 ulx, t) = Rz, t) + V(x, t) where R(x, t) is a stationary process in
o0

¢ and 1immE<S exp (—k|e)V¥(s, f)de ) = 0. From Lemmas 13

and 14 if ¢ is a bounded continuous function then lim, .. E(g(w)) =
E(9(R))

= }}Eﬁ E(g(uo) exp ( — Sjué(x) dx ))/E’(exp( — gizué(w)dw ))

where %, is a Gaussian process on the real line with expectation 0
and covariance E(u,(x)u,(y)) = exp (—n|x — y|). The stationary
distribution of R corresponds to the measure associated with (¢,
in constructive quantum field theory. See Rosen and Simon [4].
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