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THEOREM (.1. Let P and Q* be simply connected Poin-
care complexes such that P, = Q.. Assume n =2k — 2.
Then P» Poincare embeds in S*** if and only if Q" Poincare
embeds in S**%,

The Browder-Sullivan-Casson-Wall embedding theorem [see [23]
Chap. 12] then implies the analogous result for manifolds which has
also been proven by Rigdon [18] using entirely different methods.

The proof of (0.1) relies upon the following:

THEOREM 0.2. (Localize at odd primes.) Let X be a (g-1)-con-
nected space, and suppose X = X. Then for m=3q —2, 3~
T (X)) — 75(X) has a right inverse.

This result is false if we do not localize at odd primes. For ex-
ample, Mahowald’s 7, € 7} do not desuspend to 7,.,i_,(S*~°) (see [14]).
The result is also false if X is not a suspension, e.g., X = S'x §¢
and m = 2i. Since 7 = Z[24 and 7,(S?* = Z/2, m < 8¢ — 2 is best
possible.

COROLLARY 0.3. (Localize at odd primes.) Let X be a (g-1)-
connected space. Then for 1 =1 and m < 3q + 21 — 2.

T SV X) 2 (X)) Bl psn S X A DVX)2 where Z, acts on
SVX A DX by switching factors. The monzero elements in the
T(X) term are permanent in the sense that they desuspend to IX
and remain mnonzero under the suspension homomorphism. The
nonzero elements in the 7w, ., (XX A 2 X)2 term are just flashes
n the sense that they do mot desuspend and die under a single
SUSPENSION.

If X is a sphere, then this corollary implies the well known
result that for » < 2n — 2

i n odd
ﬂ:n+fr(Sn) =

T DT s n even

(see [16], [22], [21], and [7] Appendix 2).
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Elsewhere [13] in joint works with Ib Madsen and Larry Taylor
(0.2) is applied to the classification of P.L. manifolds.

I.
QL) =2°3"().
Proof of (0.2). Consider the following commutative diagram
OsX- QXA X

[z e
(1.1) Q3% = QX — Q8" x, XN X

lQhL 1

0QS™x , IX A IX 1> Q87w , X A XIX A X)

where h,, k., and h. are Hopf invariant maps coming from stable
decompositions of 23X, QX, and Q3 X. (See [15] and [5].) 7: XA X—
S 2, X A X is the inclusion map, and j comes from the homotopy
equivalence

IS~ 5, X N XIXANX) 7 S°x, XX A IX (see 2.3 of [15]).

Since @ sends cofibrations to fibrations, the right vertical edge of
(1.1) is a fibration sequence. Milgram’s EHP sequence (see [15])
implies that 23X is (8¢ — 3)-equivalent to the fibre of Qh.. Since
3w (3X) - i (2X) is induced by X, we are done if we can show
Q(7) has a right inverse when we localize at odd primes.

Consider the following commutative diagram

XANX=S"xXANX
|s |t
S” K 7, X A X’«—p—S""xZZX/\ X

where p pinches S*/Z,x + to a point. Notice that Q(9).q is @ homo-
topy equivalence. Let

£ QS X, X A X)— QS X A X)

be the transfer for the double cover w. Then (Q()ot)hy is a
homotopy equivalence, and o (Q(7) o t)iha) ©c @(P)eway iS a right inverse
for Q(%)waa-

REMARK. If X = Z’f, m < 3q — 4, and we localize at odd primes;
then a right inverse to X* can be derived from the following left



HOPF INVARIANTS, LOCALIZATION AND EMBEDDINGS 219
inverse to Milgram’s map 0: 7, (S” X, X A X) — 7, _(X):
Hy .
Tyt X) —> (XN X)2 =7,(8"% XA X).

Proof of (0.3). (Localize at odd primes.) By considering diagram
(1.1) with X replaced by XX, one gets that whenm + 7 < 3(q + 1) — 2

Trsi( X)) = s (R5571X)
=7, (2Q3X) &P YZmH(QQS“’ % ZZZiX A ZiX)
=7m.(X)D T (ST MZZZiX/\ X)),

where Ry T, (X)) > T f(QYTX A FTX) is 1-1 on @, (ST X
22 X N\ 2'X). Thus the nonzero elements in the 7}, ;. ,(S”X ;,3°X A
YiX) term do not desuspend.

The double cover 7: S*X I XA XX — 8”3 XAZ'X induces an
isomorphism

Tosin(T XN X )2 = 7wy, (ST X XN X)) .

Furthermore, the commutativity of the following diagram

T (S TXNITX) o T (S XN T X) — T 02(S7 K 2, S XA XX

N /
[, d-C )\ /8
AN e

T 27 X)

implies that the elements in the 7,.;.(S"x 3 X A 3'X)-term die
after a single suspension.

Open Problems.

1. Conjecture. If wex,Y and 3*a =0, then X*a =0 for
E=[n+ 2/2].

Surgery theory shows that this conjecture would imply the
Hirsh conjecture on embedding m-manifolds. See [6] for a partial
converse when X = S°%. The Corollary (0.3) implies this conjecture
is true when we localize at odd primes.

2. Compute the Hopf tnvariants of stably trivial elements. If
aex,(2X) is stably trivial, then in the metastable range a = o(w)
for some element wew,, (S*x XX A IX).

Conjecture. H(a) = t(g(w)) in 7(XX A TX), when ¢ is the trans-
fer of the double cover S*XIXAYX— S"x,YXAZXX, and ¢ comes
from the stable equivalence

SX XX N IX ~(S"X,H) V8", XX N XX .
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The conjecture is equivalent to stably computing the map ¢, in
the cofibre sequence

SXAX— 38K, XA X)— 8K, IX A YX -2 IX A 3IX .

3. Conjecture. (Localize at odd primes.) If m < 3 (connectivity
X), then

(X)) s (X)) —> T X A X)

is exact, where 4 is the reduced diagonal map.

Since 7(S”X ,X N X) = wi(X A X)?, there exists some map
I: (X)) —» (X A X) such that image 2 = kernel k. Furthermore,
an easy Postnikov decomposition argument shows the conjecture is
true when localized at 0.

ReEMARK. Even if we do not localize, there is a close connection
between the Hopf invariant and the reduced diagonal.

If X = ¥X, then the pinch map X — X V X yields a trivializa-
tion I'y: cone X > X AXof 4. X—>XANX.

PROPOSITION. If fe[X, Y], where X = XX and Y = 3Y, then
YH(f)el[2X, Y N Y] is represented by

T yUTly-
3X = cone XUycone X AN Lx 0Ly ) YAy

where ¢(f): cone X — cone Y s the extenston of f.

Proof. This is just a reinterpretation of the proof of Theorem
5.14 in [3].

II.

LEMMA 2.1. Let Z" be a simply connected finite CW complex
of dimension m, and let @ be a Sk -fibration over Z"(N > mn + 1).
If n < 2q, then there exists a Siau-fibration 67 over Z™ such that 0°
has a cross section, and such that 0 is stably equivalent to .

Proof. Recall that for simply connected spaces stable Sy -
fibrations are classified by BSG and S%,-fibrations with cross
section are classified by BSF,_ .. (See [20] §4.)

Thus we are done if we can show that the map which classifies
@ lifts to BSF,_ ). If q¢ is odd we shall show the map in fact
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lifts to BSF, 0. It suffices to show 7, (SG/SF}_ )iy = 0 when k&
is even and 7 < 2k + 1. Consider the exact sequence:

o0

b2
ni'[-k—l(sk l)wm) — nf(odd) ha— ﬁi(SG/SFk»I)(odd)

=)

_ b2
— Ty os(S¥ ) oty — iy (0aay -

By studying the double suspension (see [7] Appendix 2) one gets
that X7 is an epimorphism, 3~ is an isomorphism, and 7,(SG/SF_) iy =0
when 7 < 2k + 1.

The following result was proved in [10].

THEOREM 2.2. Let (W, A)™ be an oriented, finite Poincare pair
of formal dimension m. Assume wAZTT,W,m=6, and
2m = 3(n + 1), where n = homotopy dimension of W. Then (W, A)
Poincare embeds in S™ if and only if w,.(W/A) contains an element
of degree 1.

Although this is a purely homotopy theoretic result, the proof
in [10] consists of converting (W, 4) to a manifold and then using
smooth embedding theory. In S§III progress is made towards a
homotopy theoretic proof.

Proof of 0.1. Assume @ Poincare embeds in S***. Let f: Py,—
Qe be a homotopy equivalence. Let %* be the normal fibration for
the Poincare embedding of @ in S"™*, and let der, (T(n)) be the
associated normal invariant. 7%, is the Sf,-fibration associated to %
(see Sullivan [20] for definition and properties). Let & = f*nk,. /™
lifts to a map of S§;'-fibrations b(f*): S(k) — S(&f) which induces a
map of Thom complexes T(f™Y): T(w)— T(&,). Notice that ¢,=
T(f)d«) is a unit in 7w, (T(&,)), i.e. degec, €z, is a unit.

Suppose that we could construet a S*'-fibration & over P such
that £, = & and a degree 1 map c¢: S*** — T(&). Then (D(£), S(&)) is
an oriented, finite Poincare pair of formal dimension % + %k, and
Theorem 2.2 implies there exists a Poincare embedding of (D(&),
S(¢)) in S*** which determines a Poincare embedding of X in S™**,

Lemma 2.1 implies there exists a Sty -fibration & such that &,
is stably equivalent to Vp.a (Where v, = Spivak fibration of P) and
such that T(&,) is a suspension. If %k is even, BG,, ~ K(Q, k) is a
homotopy equivalence where the map is given by the Euler class;
and if & is odd, BG, , = K(Q, 2(k — 1)) (see [20] 4.12). Since 7* is
the normal fibration of an embedding in a sphere, the Euler class
of 7 and ¢, are trivial. Since & has a cross section, it has trivial
Buler class. Thus &, and g, fit together to yield a S*fibration &*
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when & is even. If k is odd, BGY* = *, and &, and &, fit together
to yield a S*fibration &*.

Theorem 0.2 implies that 7, ,(T(£%)4a) containg a unit. Further-
more, T, (T(E%)y) = 7T, (T(€y)) contains ¢, which is a unit. Thus
o (T(E%)) contains an element of degree 1.

I1I. A Poincare embedding of (W, A in S™ consists of a
finite complex C (the complement) and a map a: A — C such that
the double mapping cylinder M(ec, a) is homotopy equivalent to
S™, where ¢ 1s the inclusion of A in W. A Poincare embedding
determines a deg 1 element a in z,(W/A) which is represented by
the composition

excision
—_—

S™ = M(c, a) —— M{ec, a)/C
Notice that 3C = (W/A)U, e

W/A .

In this section we give homotopy theoretic proofs that the hy-
pothesis of Theorem 2.2 imply that

(1) (W/AU,.e™" is a suspension ' ‘

(2) There exists a map a: 34— (W/AU.e"* such that
M(Xe, o) = S™*,

If one could prove that the Hopf invariant H(a') were trivial,
then one would have a homotopy theoretic proof of Theorem 2.2.

Browder ([4]) has observed that the eomposition

b WXOUAXTUWX1I— WXO0UAXTUWX1/Wx0= W/A
'—-——)W/AUuem+1

determines an embedding of (W, A)x I in S™™. In result (2) we are
showing Browder’s map b factors through

WXxOUAXTUWXI/WXx0UWX1=YA4.

ProprosITION 3.1. Let (W, A)™ be an oriented, finite Poincare
pair of formal dimension m. If 7w, (W/A) contains an element a
of degree 1, then the map j: W— W/A which pinches A to a point
1s stably homotopic to a trivial map.

Proof. Let W+ = WU{+} with + as base point. Let j* = W*—
W/A be the map which sends + to the collapse point and which
equals 5 on W. Suppose e:S"— D, (W) A W+ is an n-duality pair-
ing. Then the map : {W*, W/A} — {S*, D,W* A W/A} which sends
S to (Ip,w+ A f)ee is an isomorphism, and we are done if we can show
Iy, w+ A\ j*)eoe is trivial.
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Let 4: (W, A) > (W, A)x W be the relative diagonal map. A in-
duces a map A: WA WX W/AXW =W/AA W*. Since (W, A)
satisfies Poincare duality, e = Ao is an n-duality map. Notice that
the following diagram commutes:

S WAL WA N W

(3.1.1) la \Q/A le it
S* A8 DL WA A WA

where 4, and 4, are reduced diagonal maps. Since S* is a sus-
pension, 4, = = and j* is stably homotopy trivial.

Lemma 3.2. (Jurca [9] Prop. 3.2.) If 3 <q, Z is a (¢ — 1)-con-
nected CW complex, and dim Z < 3q — 3, then Z desuspends if and
only if 4, =

Proof of (1). Poincare duality implies W/A is (m — n — 1)-con-
nected. 4, = (Iy,4 A 77)oA which is stably trivial by Proposition
3.1. Since m = dim W/A < 2 (connectivity W/A A W/A) = 2(2(m—mn)

—1), 4y,, is in fact unstably trivial and Lemma 3.3 implies W/A is
a suspension. Then W/AU.e""* = (W/A)" is also a suspension.

Proof of (3). Consider the cofibration sequence A4 2 Wj> W/A AN
YA. Since j is homotopy trivial, [ has a left inverse !’. Let o’ be

the composition VA — W/A->W/AU.e**'. An easy homology and van
Kampen’s argument shows, M(J¢, a') = 8™,
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