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1. Introduction. In this paper, we show that the set
of all C* Thom-Boardman maps from an n-dimensional
manifold is not open iff corank two singularities occur
generically. The latter is known to occur iff either n < p
and 2p=3n—4 or n >p and 2p =n + 4. In the course of
the proof, we establish a variation of Mather’s Multitrans-
versality Theorem: we show that jets have extensions which
are multitransverse to given submanifolds of the jet bundle
except possibly at the original jet. As an application of
this extension theorem, we show that, in Mather’s “‘nice
range of dimensions,” each jet z has a representative
f (z = 7*f(x)) such that f is infinitesimally stable on a deleted
neighborhood of z.

First we recall some properties of Thom-Boardman singularities;
for more details, the reader is referred to [1], [11] and [3]. In this
paper N (respectively P) will always be an n (respectively ») dimen-
sional manifold without boundary. There is a finite partition of the
jet bundle J*(N, P) into embedded submanifolds S%, called Thom-
Boardman Singularities, each I a nonincreasing sequence of nonnega-
tive integers. Consider f in C(N, P), the set of smooth maps from
N to P. Let S'(f) denote (j*f)"'S%, j*f the jet extension of f. Then
J*F M St implies that S'(f) is the set of points at which dim ker T'f =
7; 7 f M S»? implies 7*f M S* and S*i(f) = Si(f|S!(f)), ete. We call f
a Thom-Boardman map if j*f (S’ for all I, for all k. By Thom’s
Transversality Theorem, the set of Thom-Boardman maps is residual
(i.e., is a countable intersection of open, dense sets), hence is dense,
in the Whitney C*® topology.

THEOREM 1.1. The Thom-Boardman maps form an open subsetl
of C(N, P) iff either n < pand2p >3n —4orn>pand2p <n-+4.

Let 7 = max(n — p, 0), let S, denote S**" (jets of corank %), let
S;,; denote S+~ etc. The condition on » and p in the theorem is
precisely the condition that the codimension (abbreviated cod) of S,
be greater than n», hence that maps cannot take on S, singularities
transversally.

If cod S, is greater than #, then a map is Thom-Boardman iff it
is transverse to all Morin singularities (which are the S,,, where
1; 5 means 1, ---, 1,0, 1 occurring &k times). In this case, a map is
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Thom-Boardman iff its germ at each point is stable. It follows that
the set of Thom-Boardman maps is open in these dimensions. It is
helpful in understanding the proof of our theorem to consider a more
general method for demonstrating the openness of a set of maps
defined by transversality conditions.

A stratification of a closed set X in a manifold M is a locally
finite partition of X into embedded submanifolds, called strata,
satisfying the “condition of the frontier”: if S and T are strata and
S NCUT) # @ (Cl denotes closure), then Sc CI(T). Whitney’s con-
dition A requires that, for x €S and z,¢e T, if x, converges to x and
T, (= tangent space to T at x,) converges to some L in the Grassman
bundle, then S, c L.

The following proposition is folklore:

PROPOSITION 1.2. Suppose X is a closed subset of J*(N, P) and
&7 is a stratification of X satisfying Whitney’s condition A. Then
{f:35fMS for all Se.<} is open in C(N, P) with the Whitney C°
topology.

Using the method for constructing Whitney stratifications given
in [13] together with the fact that the Morin singularities S, are
orbits of a smooth group action on J*N, P) (the group being .75;
see [7] and [8]), one can show that there is a stratification of J*(N, P)
satisfying condition 4 with the Morin singularities among the strata.
In the case cod S, > n, the Thom-Boardman maps are precisely those
which are transversal to all those strata, hence form an open set by
Proposition 1.2.

However, we will give examples in §2 showing that S,,N
CI(S,.;) = @ for all k. Since cod S, > cod S, if £k is sufficiently large,
condition A cannot hold between S,, and S,. (In fact, it is shown
in [5] that condition A already fails between S,; and S,,) Our
examples will also show that the condition of the frontier fails.

Let ,S; denote those z in S; such that, for all f with j*f(x) =z,
J*fMS; at z. These jets are called the transversal elements of S,.
Proposition 2.1 implies that ,S,, N CI(S,;;) = @ for all &k if cod S, < .
Consider a z in this intersection. By the Transversal Extension
Theorem (8.1) there is a Thom-Boardman map f such that j%f(x) =z
for some . We pick & large enough that cod S,,, > n. There are
z,€ 8., with z;, converging to z in J¥(N, P). Lemma 3.5 demonstrates
that there are f;€ C(N, P) such that j*fi(x;) =2, and f;— f in the
Whitney C* topology; these f; can not be Thom-Boardman, hence
Theorem 1.1 will be proven.

2. Contact classes in S,, First we describe Mather’s algorithm
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for determining in which S’ a jet z lies (see [11]). Let A, be the
formal power series algebra in n variables over R. Let m, denote
the unique maximal ideal of A4, (i.e., all formal power series with
zero constant term). If f is a map germ at 0 from R" to R?, let
I(f) denote the ideal in A, generated by the Taylor series at 0 of
the component functions of f. The rank of an ideal [ is by definition
the dimension of (m% + I)/m? as a real vector space, and ecrk I =
n — rank I. Suppose rank I = 7; pick f such that I = I(f). Let ol
be the ideal generated by I and the » + 1 by » + 1 subdeterminants
of the Jacobian matrix of f; il depends only on I, not on f. The
Boardman symbol of I, or of f if I = I(f), is 1, i, --- where i, =
erk I, 1, = crk 01, 4, = crk 0(6I), etc. Mather shows that, if z = 7" f(2),
then z is in S’, where I consists of the first & terms of the Boardman
symbol of any coordinate representation of f near z.

The algebra of a k-jet z is A,/(I(g) + mE**) where g is a coordinate
representation of a map whose k-jet is z; this algebra is only deter-
mined up to algebra isomorphism. If f is a germ at =z, let V()
denote the set of lk-jets whose algebras are isomorphic to that of
JEf(x); V(f) is called the contact class of j"f(x), and is the orbit of
the action of the group .. (see [8]). From the previous paragraph
we see that each S; is a union of contact classes.

Next we show that S.,, N Cl(S.;) == @ for all k. First suppose
n < p. It is easy to show using Mather’s algorithm for computing
the Boardman sequence that the Morin singularity S,, in J% 1 > I,
is equal to V(a*+)(compare with §3 of Chapter VII of [3]). Also
one sees that S,,cJ' contains V,(xy), l > 1. Let

F.RXRXR?*—RXRXR™ R
be defined by
Fu(x; Y, 2‘) — (le -+ ubuy wy, 0) Z) ’

FF,0)e Vi(x*") if w # 0 and j'F(0) e Vi(zy) for [ > k. Thus Vi (vy) <
CI(S,.;) for all & <.
Now suppose # > p. Let

Fo.RXRXR"7"XR"*——R <R <R
be defined by
F,(x,y, w,z) = (xy - uxt :;5%” wy, z) ;
then j'F.(0) e Vi{a"* + ey w) S, if =0 and
np

J'Fy(0) e V1<xy - 5_‘, w%) S,y for 1 >1Fk.

=
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Thus
Vl<xy + gw) CCIS,,) for all k<1.

We wish to show that ,S,,NCI(S.,)# 2, for all k, if cod S, ,=<n.
In fact, this follows by applying the next proposition to the contact
class Vi(xy + D=7 wi).

PROPOSITION 2.1. Suppose cod S,, is no greater than n. Then
each contact class im Sy, C J' contains an element of .S,,.

Proof. Suppose j'f(x) = zeS, = S The intrinsic second
derivative of f at = (see §3 and §4 of Chapter VI of [3] and §2 of
[10]) is a bilinear map D?*f,: N, Xx K— C, where K = ker Df, and
C = cok Df,. Local coordinates can be chosen centered about x and
f(x) so that f has the form f(x, ---,2,)=(, -+, %, 9), Where
s =n —r — 2 is the rank of f, and

(2.2) 9@y, -+, ®,) :_Z ;%5 + 2 > b + 2L e

i,5=1 j=1 k=s+1 kyl=s+1
where the coefficients are in C(R", R*™5). If we evaluate the coef-
ficients at 0, then (2.2) reduces to a vector-valued quadratic form.
Viewed in these coordinates, D?f, is the last two terms of this
quadratic form; d*f, = D*f,| K X K is the last term and D*f,|K* x K
is the second term (K" is the set 4, = --- =2, = 0).

D*f, can also be viewed as a map from N, to Hom(K, C), and
Hom(K, C) is canonically isomorphic to the normal space to S,. Thus
z is in S, iff D*/,: N, — Hom(K, C) is surjective. Furthermore, z is
in S,, iff d*f,: K— Hom(K, C) is injective.

Assume z is in S,,. Then the image of d*f,: K — Hom(K, C) has
dimension % — s. Since

dim Hom(K, C) = cod S, < n, dim(Hom(K, C)/d*f.(K))

is less than or equal to s = dim K*. Since we can choose the coef-
ficient functions in the second term of (2.2) arbitrarily without
affecting the ideal, hence the contact class, of f, we can choose an
f' contact equivalent to f so that d*f, = d*f, and D%, |K* spans
Hom(K, C) mod d?f,(K). Hence D3f, is surjective; hence j'f'(x) is in
S

While it is not relevant to this paper, we would like to mention
that Mather has proved the following (Theorem 6.1 of [9]): if U is
a C? submanifold of J*(N, P) and cod U < n, then the set of trans-
versal points (i.e., ,U) is dense in U.
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3. Transversal extensions of jets. In this section we establish
a variation of the Multijet Transversality Theorem (due to Mather
[91; see also [3]) and give some applications. Then we complete the
proof of Theorem 1.1.

Suppose X C N and h: X — J¥(N, P) is a section. Let A =
{feCN, P): j*f1X = h}; A is a closed subset of C(, P) in the C%,
hence in the C=, topology. Furthermore, A is a Baire space (see
Theorem 4.4b of Chapter 2 of [4]), i.e., every residual set (=countable
intersection of open, dense sets) is dense.

Now suppose X is closed in N. Let x: J*(N, P)— N® x P
denote the s-fold k-jet bundle and let X be the set of s-tuples with
at least one component in X; X* is closed in N*. Suppose W is an
immersed submanifold of 7 /{(N*® — X*), where =, is the composition
of © with the projection of N® x P* on its first factor. Let A’ =
{fed: J° fI(NY — XN W}

ProPoSITION 3.1. (Multijet Transversal Extension Theorem.) A’
ts restdual in A.

Proof. W can be covered by a countable collection of compact,
codimension 0 submanifolds M, (with boundary); furthermore, the M,
may be chosen so that, for each 4, there exist relatively compact,
mutually disjoint coordinate patches U, ,, ---, U,, whose closures are
contained in N — X and V,,, ---, V,, in P such that =(M,) CU,, X

o XU X Vg X oooe X V.

Let B, ={fcC(N, P): ,5*0" W on M} and let 4, = B, NA4; 4, is
open in A since B, is open (see II. 4.14 of [3]). Pick any neighbor-
hood U of f. Exactly as in the proof of the Multijet Transversality
Theorem ([9] or [3]), there is a ¢ in B, N U which agrees with f
outside U, , U --- UU,,; thus g is in A, NU. Hence A4, is dense in
A; A' = N A, 1s residual.

COROLLARY 3.2. If {W;} s a countable collection of immersed
submanifolds of w7 (N — X)), then {f € A: j*f|(N® — XYN W, for
all 1} is residual.

In Mather’s nice range of dimensions ([9] and [10]), J*(N, P) is
the disjoint union of finitely many contact classes C, and finitely
many other manifolds M, of codimension greater than n. Thus, in
these dimensions, a map is multitransverse to all contact classes iff
it is multitransverse to the C;’s and M,’s.

Mather shows in [9] that if f is multitransverse to all contact
classes and if f|C(f) (C(f) is the set of points in N at which the
rank of f is less than p) is proper, then f is infinitesimally stable;
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if in addition f is proper, then f is stable.

COROLLARY 3.3. In the nice range of dimensions, for every k-
jet z there is a map f defined on a meighborhood U of x in N such
that j*f(x) = z and f|(U — {x}) s infinitesimally stable; if n < p,
then f|(U — {x}) is stable.

Proof. First, we can find an f on a U so that j*f(x) =2z and
S is finite (see Example 5.2 of Chapter VIII of [12] and §2 of Chapter
VII of [3]). Since we are in the nice range of dimensions and finite
maps form an open set, we can assume that f is multitransverse to
all contact classes on U — {x}. Since f is finite, shrinking U if
necessary, f|(U — {x}) will be proper on C(f); if n < p, f will be
proper on all of U — {x}.

Note that, by Lemma 4.4 of [9] and Theorem 1.13 of [7], if j7f
is transverse to the contact class of j?f(x), then the germ of f at
x is stable.

A germ f, is finitely-determined if, for some [, every germ g,
having the same I-jet as f, at # can be transformed into f, by local
coordinate changes. If f, is finitely-determined, then for every
representative f of f, there is a neighborhood U of 2 such that
SFI(U — {x}) is multitransverse to all contact classes (see [2]); the
converse is true if f is complex analytic. This suggests the con-
jecture that, in the nice range of dimensions, every jet has a finitely-
determined representative. C. T. C. Wall has recently confirmed that
this is true in a range of dimensions slightly larger than the nice
range.

We return to the proof of Theorem 1.1.

COROLLARY 3.4. If cod S, < m, then for each xe Nand all k=1
there is @ Thom-Boardman map f such that j*tf(x) e S, N Cl(S.y).

Proof. We know that V,.,(xy + D=7 w?) is contained in S,,N
CI(S.x). Choose in this contact class a transversal element z of S,
so that w7(2) =2. Let A= {feC(N, P): j**'f(x) = z}. Applying
Corollary 3.2 to the case s = 1 and {W,} the Thom-Boardman singul-
arities, we see that there is an f such that j**'f(z) =z and away
from x j*i'f is transverse to all Thom-Boardman singularities. Thus
f is a Thom-Boardman map.

LEMMA 3.5. Suppose z,, — j°f(x) € J*N, P). Then there are maps
fn and points x, such that j*f.(x,) = 2, and f, — f in the Whitney
C= topology.
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Proof. Necessarily 7(z,) = (., ¥.) converges to w(z) = (z, y).
Choose coordinate charts (U, ) about x and (V, ) about ¥ such that
»(U) = R*, r(x) = 0, »(z,,) = %, and (V) = R?. Choose any maps g,
such that j*g,.(z,) = 2.. Let ¢, = log,or ' and f' = lofor™. Let p,
be a2 polynomial of degree & expanded about u, such that j%p,.(u,) =
7gn — fH(u,). Since j*p,(u,) converges to the zero jet at 0, the
coefficients of the p,’s go to 0. For any compact set K < R”, there
is a C such that |u — u,|" < C for all ueK,m >0 and 0<1 < k.
Thus p,, — 0 uniformly on K, as does each of its derivatives. Pick
acC(R", R) such that ¢ = 1 on a neighborhood of 0 and a = 0 off a
compact set. Let f,|U = 1"ap, + fer and f,,|(IN —U) = f. Then
fn- > f in the Whitney C” topology and j*f,.(x,) = 2.

Choose £ sufficiently large that cod S, > n. Choose f as in
Corollary 3.4. By the preceding lemma, f is the limit of maps f,
having S, singularities. Necessarily f, is not a Thom-Boardman
map. Thus the proof of Theorem 1.1 is complete.

ExAMPLE 3.6. Let f(z, v, s, t) = (9(x, ¥) + sx + ty, ay, s, t), where
g is in mZ; then 72£(0) is in ,S.,. If we take g(x, y) = «* + ¥°, then
f is a Thom-Boardman map and is the limit of maps which, having
S..; singularities, are not Thom-Boardman. The computational details
involved in this example are worked out in [6].
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