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In this paper it is shown that for n = 38,5R" — R* con-
tains 2° nonhomeomorphic continua. In the proof we will
also construct ¢ continua in AR®— R® with nonisomorphic
first Cech cohomology groups and 2° compacta in SR*—R® no
two of which have the same shape.

Introduction. Much work has been done in the study of the
Stone-Cech compactification of the natural numbers. Some of these
results have been applied to the study of BX — X for other topological
spaces X, as in the proof of Frolik’s result that X — X is not
homogeneous for a nonpseudocompact space X (see [9]). Shape theory
has offered new methods for examining AX and B8X — X that utilize
the intrinsic topological properties of BX, as is illustrated in this
paper in the case of BR". Using the fact that shape factors through
Cech cohomology, we will construct ¢ continua in BR® — R3, no two
of which have the same shape. Then, a particular embedding of
subsets of the continua into BR® will exhibit 2° compacta in SR*— R®
with different shapes. An easy modification of the compacta will yield
2° nonhomeomorphic continua in BR® — R? the proof of which utilizes
the properties of shape dimension as developed by J. Keesling [5].
From this it follows that for # = 8 there are 2° nonhomeomorphic
continua in BR" — R".

Preliminaries. Let BX denote the Stone-Cech compactification
of a space X. For references, see Gillman and Jerison [2], or Walker
[9]. H*X) will denote the n-dimensional Cech cohomology of X with
coefficients in Z based on the numerable covers of X. Also, [X, S!]
will denote all homotopy classes of maps from X into S', with the
group structure induced by the group structure on S'. Since S! is
a K(Z,1), H(X) is isomorphic to [X, S']. Finally, let 11 4, be the
group Hiez Ai/ZieZ Ai-

The following theorems will be used in this paper:

THEOREM 1 (Lemma 1.7 of [1]). For X mormal and connected,
there is an exact sequence 0 — C(X)/C*(X)— [BX, S']—[X, §]—0
where C(X) is the additive group of real valued continuous functions
on X, and C*(X) is the subgroup of bounded real continuous functions.

THEOREM 2 (Theorem 1.6 of [5]). Let nm =1 be an integer. Let
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X be a locally compact, o-compact space such that for every compact
set K< X there is a compact set L € X — K such that dim L = n.
Then the shape dimension of BX, Sd X = n and Sd(LX — X) = n.

THEOREM 3 (Corollary 1.9 of [5]). Let X be a Lindeldf space
and let K be a compact set contained in BX X. Then dim K =
Sd K.

THEOREM 4 (Theorem 1.12 of [4]). Suppose that X is realcompact
and that K is a continuum contained im BX — X. Then if f(K)=
Y is any continuous maps which is a shape equivalence, f is a
homeomorphism.

Main Theorems.

THEOREM 5. There are ¢ subcontinua of BR’ — R’ which have
nonisomorphic first Cech cohomology groups.

Proof. Consider the collection {P,: a €.57}, where each P, is a
sequence of prime numbers such that there are an infinite number
of distinet primes in P,, and each prime occurs an infinite number
of times; if a, be.>” with a +# b, then there is a prime occuring in
P, which is not in P,, or a prime in P, which is not in P,; and
card .o~ =e¢. Let 3, be the solenoid corresponding to the sequence
P, and let B, = H'(C.). We know that B, is isomorphic to
{m/p,p, - -+ D2 m € Z, p; € P,}.

The solenoid ), may be described as follows: let P, =
{Dy Doy Dsy ++}. Sl is the intersection of a decreasing tower of solid
tori {T,} in R*® with the properties that (i) T,., & T, for every ne
Z+; (i) lim,_ [length of cross section of T,] = 0; and (iii) T, is
wrapped p, times around the hole of T,. Also, let p, g€ T, so that
the distance from p to ¢ is maximal, and specify that T, passes
through » and ¢ for every m.

Position 3, in R® so that » = (0,0,0) and ¢ = (0, 0,1). Define
fR—R by f(z,y,2) = (2,9, 2+1), and let A= U,z f"(.). Hence,
A is the union of a countable number of copies of 3, placed end
to end. Now H'(A) = [l.:0 H'(f*(Cl) = II H'(2..) (the countable
infinite product of copies of H(3).)), and so we have H'(4) = ]I B..

Let A, = Uizn fi(C0), 1.6, A, is the closure of A with the first
n copies of >, deleted. Since A and A, are closed subsets of R°, BA
and BA, are contained in BR°’. Also, A, is connected implies that
BA, is connected. Hence, A — A = (.2, BA, is a continuum in
BR* — R*. Let A* = BA — A. We now wish to compute H'(A¥).

By Theorem 1, there is an exact sequence 0— C(X)/C*(X)—
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[BX, §']—[X, S§']— 0, where C(X) is the additive group of real
continuous funetions on X, and C*(X) is the subgroup of bounded
functions. Since A* = (), B4., by the continuity of Cech cohomo-
logy, H*(4*) = lile H'(BA,), where the bonding maps are induced by

inclusion, 7}: H(BA,) > HY(BA,,). For each n, we have the following
commutative diagram:

0— C(A’IL>/C*(A'II> E— [BA’I” S]] I [A'M Sl] —0

- \se .
l’tn ‘1,11 lzﬁ

0 — C(A,)/C*(Api ) — [BALs, Sl — [A4iy, '] — 0.

This diagram gives rise to the following exact sequence: O0-: >
hm C(4,)/C*(A,) — llm |BA,, S'] >11m [4,, S}]—0. Since [X, S'l=
H‘(X), we have hm [BA,, S! ] = hm H'(BA,) = H'(A*), and
hm [4,, S = hmH (A, ), where the bondmg maps are ;. Hence,
We have the followmg exact sequence:

0 — lim C(4,)/C*(A,) —> H(A*) — lim H'(4,) — 0 .

We will now evaluate these direct limits.
Since A4, differs from A,,, by a set of compact closure,

i C(A,)]C*(4,) — C(4,:)/C*(A,.,) is an isomorphism. Hence,
lim C(A,)/C*(A,) is isomorphic to C(A,)/C*(4,). Since C(A4,)/C*(A4,)
is>a torsion free divisible group, C(A,)/C*(A,) is isomorphic to a
direct sum of copies of @, the rational numbers. Therefore,
lim C(4,)/C*(4,) = D. Q.

’ Now consider lim H'(4,). As before, H'(A,) is isomorphic to
[[ B,, the countabl; infinite product of copies of B,. The bonding
map 15 H'(4,) — H'(4,.,) is defined by

T (X ®gy Ty =+ +)) = (X, Tyy =+ +) (X, € B,)

Now lim H'(A,) is isomorphic to (3, H'(A4,))/S = (. (II B.))/S, where
S is the subgroup generated by X(¥.) — Y., ¥. € H (4,). (See [7],
page 29.) Define a map ¢: [{ B, — G (I1 B.))/S by g9(a) = (a, 0,0, ---) +
S. One can verify that g is an onto homomorphism with kernel
Z B,. Hence, g induces an isomorphism (33(I1 B.,))/S = (11 B.)/(C. B.) =
1 B., and so hm HYA,) = [l B..

By these two evaluations, we get the following exact sequence:
0->@P.Q— H(A*)— 1 B.—0. Since @. Q is divisible, the sequence
splits (see [7]), and H A" =] B.®(@®.Q). Thus we have constructed
a continuum A* in SR’ — R* with H'(A™) = 11 B. X (B, Q).

Now for a,be A, a == b, H(A*) is not isomorphic to H*(B*). This
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follows from the fact every element of H'(A*) is divisible by a prime
p if and only if pe P,. Hence, we have constructed ¢ continua in
BR* — R* with nonisomorphic first Cech cohomology groups. Since
two spaces with nonisomorphic Cech cohomology groups have different
shapes, we have the following corollary.

COROLLARY 1. There are ¢ continua in SR* — R*, no two of which
have the same shape.

THEOREM 6. There are 2° compacta tn BR* — K, no two of
which have the same shape.

Proof. Theorem 6 is a continuation of Theorem 5. Suppose
7, A, and A* are as in the proof of Theorem 5. For each a€.%
we have constructed a continuum A* in BR® — R°® such that for
a # b, Sh(A*) = Sh(B*). Now for each subset of .o~ of cardinality
¢, we will construct a compactum in BR® — R® such that if S, S.<
&7, S,# S,, and card S, = card S, = ¢, then the corresponding compacta
will have different shapes. Since there are 2° subsets of .o of
cardinality ¢, this will exhibit 2° nonshape equivalent compacta in
BR? — R®.

Let S < .97 such that card S = ¢. There is a one-to-one corre-
spondence between elements of S and real numbers 7 such that 0 <
r < 2. So each element a of S corresponds to a unique 7, €[0, 27).
Let h,: R’ — R® be a rotation of the y — z plane r, radians. Define
A, =h,(A), where A is as defined above. As before, H'(A4F) =
Tl B. ® (®.Q), where Af = A, — A,. Let Cg= U..s A7. Then Cj
is a compact subset of SR — R®.

Claim. AF is an isolated component of Cj.

Proof of Claim. Let N, i = 1,2, be a neighborhood of the ray
h.,({(0, 0, 2): 2 € R*}) of radius 2,3, respectively. By construction,
A, S N,. Define a function f: N, U (R*— N, —[0,1] by f(N,) =0
and f(R*— N,) = 1. Since R® is normal, there is a continuous exten-
sion of f, say f, to all of R®. Then f has a continuous extension, 5f,
to all of BR®. Since Bf(4,) = f(4,) = 0, we have Bf(4,) =0, and so
Bf(A¥) =0. ForbeS, b=+ a, Bf(BF) =1, since for some neighborhood
about the origin, points in B, not in this neighborhood are in R® —
N,. Thus, Bf(Uses—a) BY) = 1. By normality, there exist open sets
Uand Vin R with UN V=g, A} CU, and (U,cs_1o) Bf)S V. Hence,
A¥ is an isolated component of Cy = (U,cs_1o Bf) U AF.

Note that these are the only isolated components, for if X <
C, — U..5s A}, then any open set containing X also contains points
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of U..s 4}, since every point of X is a limit point of U..s AF.

Now, for S, S, £ 4 with S, # S, and card S, = card S, = ¢, the
shape of Cj is different from the shape of Cj. This follows from
the fact that if Sh(Cs) = Sh(Cy,), then each isolated component of
Cs, is shape equivalent to an isolated component of Cs,. Either S, —
S,#* @, or S; — S, # @, so without loss of generality assume that
S, — S, @, and let €S, — S,. Then A} is an isolated component
of C;, which is not shape equivalent to any isolated component of
Cs,, which implies that Sh(Cs,) # Sh(Cg,).

Hence, there are 2° compacta in BR® — R® no two of which have
the same shape. Since there are at most 2° compacta in GR?, there
are exactly 2° compacta in BR® — R® no two of which have the
same shape.

COROLLARY 2. For n = 3, there are 2° compacta in BR" — R*,
no two of which have the same shape.

THEOREM 7. There are 2° nonhomeomorphic continua in BR*— R°.

Proof. As in the proof of Theorem 6, let S < .%” such that
card S = ¢; A, = h, (A); and Cs = U,.5 A4F.

Consider a plane P tangent to each solenoid of U,.s4,, and let
P =P - PC BR* — R*. Let X = C;U P*. One can easily verify
that X is a continuum. Now suppose C, = U,cr B} is the result of
a collection of solenoids corresponding to the subset T of .o/ where
card T =¢ and T+ S. Then Y = C, U P* is a continuum of SR®— R®.

We will show that X and Y are not homeomorphic. The method
will be as follows. If h is a homeomorphism from X onto Y, then
h(Cy) = C, which implies that C; and C, are homeomorphie, contra-
dicting the fact that Cy and C; have different shapes by Theorem 6,
and therefore are not homeomorphic.

Clatm 1. Let xeBR* — R®, and V an open set of GR? — R?con-
taining 2. Then there exists a closed set F' containing x, such that
F ZV and F has dimension 2.

Proof of Claim 1. Since V is an open set in BR* — R*, V=Un
(BR? — R?), where U is open in SR?. There is a set W, open in SR?,
such that xe¢ W and W CU. Let D =clp(W N R?. Now

Clim(Cl( WNRY) =W U,

so that the set 8D — D = Clz(Clpe( W N R?)) — Clp( W N R?) is a closed
subset of V in gR* — R°
For any compact subset C of D, D—C is open in D=Cl (W N RY.
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Since W R? is open in R D — C contains a subset Z that is open
in R*. Let N be a basic open set in R’ such that N < Z. Since
dim N == 2, by Theorem 2 Sd(BD — D) = 2. By Theorem 3,

dim(BD — D) = 2.

(See also [8].) Since dim(8D — D) < 2, it follows that dim(5D— D) =
2. Hence, F'= 8D — D is a closed subset of V containing a2 of
dimension 2.

Claim 2. If xe AF such that x ¢ P*, then h(x)e C,.

Proof of Claitm 2. The claim follows from the fact that any
neighborhood of a point in ¥ — C, & P* has dimension 2, by Claim
1, while x has neighborhoods of dimension < 1.

Clatm 3. If xe A N P*, then h(z)eC,.

Proof of Claitm 3. We will show that ax is a limit point of
AN (X — P*). Then by Claim 2, since WA’ N (X — P*) < C,, it
follows that h(x)e C,.

Let U be an open set in BR* — R® containing x. There is a set
W, open in BR® — R such that te WS WC U. Now, W = (BR* — R
V, where V is open in BR’. Since V is an open set containing
redA¥* =BA, — A, VN A+ @. This implies that V intersects an
infinite number of solenoids of A,.

Let 2, e A, N VN(R — P) such that |v, > - as #— . This
is possible since V' N R’ is open, and A, N P is a countable set. Let
yeB{x,:n=1}) —{r,:n =1} & BR* — R*. Since z,€ A4, for every
n, y € BA, — A,. Now, define f on PU{x,:n =1} by f(P)=0 and
f(x,) = 1 for every n. Since PU {x,:n =1} is closed in R? there
is a continuous extension of f to all of R* say f. Then f can be
extended continuously to BR®, say by Bf. Now Bf(x,) = 1 for every
n implies that 8f(y) = 1. Since BAP) = 0, Bf(P) = 0. Hence, y ¢ SP.
Also, x,e V for every m, which implies that ye ¥V —V, and hence
ye W ZU. Therefore, U (AF — P*) = ¢, which implies that = is
a limit point of A N (X — P*). Hence, h(x)e C,.

By Claim 2 and Claim 3, h(A4A}) < C, for every AF. Then h(UA}) <
C,, which implies W(UA)=C, = Cp, and h(Cy) = C,. Similarly,
h~Y(C,) = Cs, which implies C, < h(C). Therefore, h(Cs) = C, and
C, and C, are homeomorphic. This contradicts Theorem 6, since
Sh(Cy) = Sh(C;). Hence, X and Y are not homeomorphiec.

By Theorem 6, there are 2° choices for X, and since no two of

them are homeomorphic, there are 2° nonhomeomorphic continua in
BR' — R°.
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COROLLARY 3. For n=3, BR"— R" contains 2° nonhomeomorphic
continua.

COROLLARY 4. Let X and Y be as in the proof of Theorem 1.
Then there does not exist a continuous map f: X-»Y that is a shape
equivalence. In particular, X and Y are not homotopic.

Proof. By Theorem 4, if f is a continuous map, f: X —Y, which
is a shape equivalence, then f is a homeomorphism, contradicting
Theorem 7.

Note that Corollary 4 does not imply that X and Y are not shape
equivalent, since there are shape morphisms that are not induced by
continuous functions.

The problem appears much more nontrivial in the cases n =1, 2.
Since solenoids cannot be embedded in R the same argument fails
in the case n = 2. In fact, the method of Theorem 5 fails in general
for R?, since the cohomology of a continuum in the plane is either 0
or a direct sum of copies of Z, the integers. The solution in the
case of » = 1 appears even more difficult, and is yet unsolved.
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